Skip to main content
Log in

Levans in Excised Leaves ofDactylis glomerata: Effects of Light, Sugars, Temperature and Senescence

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Dactylis glomerata (orchardgrass) accumulates a single series of levans and the high DP polymers might be correlated with an increased stress resistance. A single levan series could be induced in excised orchardgrass leaves, without any 1 -kestose accumulation, strongly suggesting that fructan synthesis occurs independently of 1-SST activity. This elegant excised leaf system was used to study fructan metabolism regulation as affected by environmental conditions and exogenous sugar treatments. In contrast to the well-studied barley excised leaf system, fructan biosynthesis could not be rapidly induced in the light without exogenous sugar and only a limited fructan synthesis was observed in the dark with sugar. It can be concluded that both light and sugar are needed to achieve an optimal fructan synthesis. To induce fructan biosynthesis, sucrose could be replaced by a combination of glucose and fructose. Fructans were found to be a surplus pool of sucrose when a threshold sucrose concentration is surpassed. A metabolic switch to fructan degradation was observed when induced orchardgrass leaves were incubated in the dark at 30°C. Interestingly, fructans persisted during senescence of sugar-induced orchardgrass leaves. On the longer term, these fundamental regulatory insights might help to create superior grasses for future feed and/or biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature448: 938–942

    Article  PubMed  CAS  Google Scholar 

  • Bonnett GD, Sims IM, Simpson RJ, Cairns AJ (1997) Structural diversity of fructan in relation to the taxonomy of the Poaceae. New Phytol136: 11–17.

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin J-F, Wu S-H, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J42: 567–585

    Article  PubMed  CAS  Google Scholar 

  • Cairns AJ, Nash R, Machado-Carvalho MA, Sims IM (1999) Characterization of the enzymatic polymerization of 2,6-linked fructan by leaf extracts from timothy grass (Phleum pratense). New Phytol142: 79–91

    Article  CAS  Google Scholar 

  • Chatterton NJ, Harrison PA, Thornley WR, Bennett JH (1993) Structures of fructan oligomers in cocksfoot (Dactylis glomerata L). J Plant Physiol142: 552–556

    CAS  Google Scholar 

  • De Coninck B, Van den Ende W, Le Roy K (2007) Fructan ExoHydrolases in plants: Properties, Occurrence and 3-D structure. In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 157-159

  • Edelman J, Jefford T (1968) The mechanism of fructosan metabolism in higher plants as exemplified inHelianthus tuberosus. New Phytol67: 517–531

    Article  CAS  Google Scholar 

  • Frehner M, Keller F, Wiemken A (1984) Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jeruzalem artichoke tubers (Helianthus tuberosus L.). J Plant Physiol116: 197–208.

    CAS  Google Scholar 

  • Fujishima M, Sakai H, Ueno K, Takahashi N, Onodera S, Benkeblia N, Shiomi N (2005) Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis of fructo-oligosaccharides in vivo. New Phytol165: 513–524

    Article  PubMed  CAS  Google Scholar 

  • Geuns JMC, Cuypers AJF, Michiels T, Colpaert JV, Van Laere A, Van Den Broeck KAO, Vandecasteele CHA (1997) Mung bean seedlings as bio-indicators for soil and water contamination by cadmium. Sci Tot Env203: 183–197

    Article  CAS  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L). Plant Biotech J5: 192–206

    Article  CAS  Google Scholar 

  • Hendry GAF (1993) Evolutionary origins and natural functions of fructans —a climatological, biogeographic and mechanistic appraisal. New Phytol123: 3–14

    Article  CAS  Google Scholar 

  • Isejima EM, Figueiredo-Ribeiro RCL (1993) Fructan variations in tuberous roots ofViguiera discolor Baker (Asteraceae): the influence of phenology. Plant Cell Physiol34: 723–727

    CAS  Google Scholar 

  • Kingston-Smith AH, Walker RP, Pollock CJ (1999) Invertase in leaves: conundrum or control point?J Exp Bot50: 735–743

    Article  CAS  Google Scholar 

  • Livingston DP III, Henson CA (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: Responses to second-phase cold hardening. Plant Physiol116: 403–408

    Article  CAS  Google Scholar 

  • Lothier J, Lasseur B, Le Roy K, Van Laere A, Prud’homme MP, Barre P, Van den Ende W, Morvan-Bertrand A (2007) Cloning, gene mapping and functional analysis of a fructan 1-exohydrolase (1 -FEH) fromLolium perenne implicated in fructan synthesis rather than in fructan mobilization. J Exp Bot58: 1969–1983

    Article  PubMed  CAS  Google Scholar 

  • Miller LA, Moorby JM, Davis DR, Humphreys MO, Scollan ND, MacRae JC, Theodorou MK (2001) Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): milk production from late-lactation dairy cows. Crass Forage Sci56: 383–394

    Article  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science300: 332–336

    Article  PubMed  CAS  Google Scholar 

  • Morcuende R, Kostadinova S, Perez P, del Molino IM, Martinez-Carrasco R (2004) Nitrate is a negative signal for fructan synthesis, and the fructosyltransferase-inducing trehalose inhibits nitrogen and carbon assimilation in excised barley leaves. New Phytol161: 749–759

    Article  CAS  Google Scholar 

  • Müller J, Aeschbacher RA, Sprenger N, Boiler T, Wiemken A (2000) Disaccharide-mediated regulation of sucrose:fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves. Plant Physiol123: 265–74

    Article  PubMed  Google Scholar 

  • Nagaraj VJ, Altenbach D, Galati V, Luscher M, Meyer AD, Boiler T, Wiemken A (2004) Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyl transferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. New Phytol161: 735–748

    Article  CAS  Google Scholar 

  • Obenland DM, Simmen U, Boiler T, Wiemken A (1991) Regulation of sucrose: sucrose fructosyltransferase in barley leaves. Plant Physiol97: 811–813.

    Article  PubMed  CAS  Google Scholar 

  • Parrott DL, McInnerney K, Feller U, Fischer AM (2007) Steam-girdling of barley (Hordeum vulgre) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol176: 56–69

    Article  PubMed  CAS  Google Scholar 

  • Pavis N, Boucaud J, Prud’homme MP (2001) Fructans and fructan-metabolizing enzymes in leaves ofLolium perenne. New Phytol150: 97–109

    Article  CAS  Google Scholar 

  • Pollock C, Farrar J, Tomos D, Gallagher J, Lu C, Koroleva O (2003) Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. J Exp Bot54: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Pourteau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence inArabidopsis. Planta224: 556–568.

    Article  Google Scholar 

  • Prud’homme MP, Morvan-Bertrand A, Lasseur B, Lothier J, Meuriot F, Decau ML, Noiraud-Romy N (2007) Lolium perenne, backbone of sustainable development, source of fructans for grazing animals and potential source of novel enzymes for biotechnology. In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 231-258

  • Sanada Y, Takai T, Yamada T (2007) Ecotypic variation of water-soluble carbohydrate concentration and winter hardiness in orchardgrass (Dactylis glomerata L.). Euphitica153: 267–280

    Article  CAS  Google Scholar 

  • Shiomi N, Benkeblia N, Shuichi O (2007) The metabolism of the fructooligosaccharides in asparagus (Asparagusofficinalis L.) In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 213-230.

  • Spollen WG, Nelson CJ (1988) Characterization of fructan from mature leaf blades and elongation zones of developing leaf blades of wheat, tall fescue and timothy. Plant Physiol88: 1349–1353

    Article  PubMed  CAS  Google Scholar 

  • Thorsteinsson B, Harrison PA, Chatterton NJ (2002) Fructan and total carbohydrate accumulation in leaves of two cultivars of timothy (Phleum pratense Vega and Climax) as affected by temperature. J Plant Physiol159: 999–1003

    Article  CAS  Google Scholar 

  • Tilman A, Hill J, Lehman C (2006) Carbon-negative biofuels from low input high diversity grassland biomass. Science314: 1598–1600.

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Yoshida M, Kawakami A (2003a) Fructan 1-exohydrolases: β(2,1) trimmers during graminan biosynthesis in stems of wheat (Triticum aestivum L.)? Purification, characterization, mass mapping and cloning of two 1-FEH isoforms. Plant Physiol131: 621–631

    Article  Google Scholar 

  • Van den Ende W, De Coninck B, Clerens S, Vergauwen R, Van Laere A (2003b) Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants. Characterization, cloning, mass mapping and functional analysis of a novel “cell-wall invertase-like” specific 6-FEH from sugar beet (Betavulgaris L). Plant J36: 697–710

    Article  Google Scholar 

  • Van den Ende W, Van Laere A, Le Roy K, Vergauwen R, Boogaerts D, Figueiredo-Ribeiro RCL, Machado-de Carvalho MA (2005) Molecular cloning and characterization of a high DP fructan: fructan 1-fructosyl transferase fromViguiera discolor (Asteraceae) and its heterologous expression inPichia pastoris. Physiol Plant125: 419–429

    Google Scholar 

  • Van den Ende W, Clerens S, Vergauwen R, Boogaerts D, Le Roy K, Arckens L, Van Laere A (2006) Cloning and functional analysis of a high DP 1-FFT fromEchinops ritro. Comparison of the native and recombinant enzymes. J Exp Bot57: 775–789

    Article  PubMed  Google Scholar 

  • Van den Ende W, Van Laere A (2007) Fructans in dicotyledonous plants: Occurrence and metabolism. In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 1-14

  • Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell & Env25: 803–815

    Article  Google Scholar 

  • Vergauwen R, Van den Ende W, Van Laere A (2000) The role of fructans in flowering ofCampanula rapunculoides. J Exp Bot51: 1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Vergauwen R, Van Laere A, Van den Ende W (2003) Properties of Fructan: Fructan 1-fructosyltransferase (1-FFT) fromCichorium intybus L. andEchinops ritro L., two Asteracean Plants Storing Greatly different types of inulin. Plant Physiol133: 391–401

    Article  PubMed  CAS  Google Scholar 

  • Volaire F, Lelièvre F (1997) Production, persistence, and water-soluble carbohydrate accumulation in 21 contrasting populations ofDactylis glomerata L. subjected to severe drought in the south of France. Austr J Agric Res48: 933–944

    Article  CAS  Google Scholar 

  • Volaire F, Thomas H, Lelièvre F (1998) Survival and recovery of perennial forage grasses under prolonged Mediterranean drought. I. Growth, death, water relations and solute content in herb- age and stubble. New Phytol140: 439–449

    Article  Google Scholar 

  • Wagner W, Wiemken A, Matile P (1986) Regulation of fructan metabolism in leaves of barley (Hordeum vulgare L. cv. Gerbel). Plant Physiol81: 444–447

    Article  PubMed  CAS  Google Scholar 

  • Wei JZ, Chatterton NJ, Harrison PA, Wang RRC, Larson SR (2002) Characterization of fructan biosynthesis in big bluegrass (Poa Secunda). J Plant Physiol159: 705–715

    Article  CAS  Google Scholar 

  • Yamamoto S, Mino Y (1985) Partial purification and properties of phleinase induced in stem base of orchardgrass after defoliation. Plant Physiol78: 591–595

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Mino Y (1987) Effect of sugar level on phleinase induction in stem base of orchardgrass after defoliation. Phys Plant69: 456–460

    Article  CAS  Google Scholar 

  • Yamamoto S, Amano S, Mino Y (1999) Carbohydrate metabolism in the stem base of timothy and orchardgrass in winter. Grassland Sci44: 315–319

    CAS  Google Scholar 

  • Yoshida M, Kawakami A, Van den Ende W (2007). Graminan metabolism in cereals: wheat as a model system. In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 201-212

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Van den Ende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maleux, K., Van den Ende, W. Levans in Excised Leaves ofDactylis glomerata: Effects of Light, Sugars, Temperature and Senescence. J. Plant Biol. 50, 671–680 (2007). https://doi.org/10.1007/BF03030612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030612

Keywords

Navigation