Membrane degradation, accumulation of Phosphatidic acid, stimulation of catalase activity and nuclear DNA fragmentation during 2,4-d-induced leaf senescence in mustard

Abstract

We investigated 2,4-D-induced leaf senescence in young mustard seedlings. A set of morphometric, biochemical and molecular parameters were analyzed to characterize senescence markers. In accordance with earlier reports, chloroplast-membrane degradation marked the early phase of leaf senescence based on the analysis of the galactolipid fraction. Degradation of grana occurred earlier to that of the envelope, as revealed by the relative level of their specific galactolipids, namely, monogalactosyl diglyceride and digalactosyl diglyceride. Phospholipids showed extensive degradation resulting in the accumulation of lyso-derivatives of major phospholipids and phosphatidic acid (PA) in senescing leaves. Catalase activity was stimulated by 2,4-D and reflected scavenging of reactive oxygen species. Nuclear DNA degradation, a previously known death signal that represented a point of no return from progression of senescence, occurred late on the 4th day subsequent to 2,4-D supplementation. AgNO3, an inhibitor of ethylene biosynthesis, inhibited leaf senescence by ca. 54% based on PA content Involvement of 2,4-D, ethylene and abscisic acid in leaf senescence is discussed in relation to hormonal interplay.

This is a preview of subscription content, log in to check access.

Literature Cited

  1. Aebi H (1984) Catalasein vitro. Method Enzymol105: 121–126

    Article  CAS  Google Scholar 

  2. Arnon DI (1949) Copper enzyme in isolated from chloroplasts: Polyphenoloxidase inBeta vulgaris. Plant Physiol24: 1–15

    PubMed  Article  CAS  Google Scholar 

  3. Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol131: 430–442

    PubMed  Article  Google Scholar 

  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol37: 911–917

    PubMed  CAS  Google Scholar 

  5. Chae HS, Cho YG, Park MY, Lee MC, Eun MY, Kang BG, Kim WT (2000) Hormonal cross-talk between auxin and ethylene differentially regulates the expression of two members of the 1-aminocyclopropane-1-carboxylate oxidase gene family in rice (Oryza sativa L.). Plant Cell Physiol41: 354–362

    PubMed  CAS  Google Scholar 

  6. Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci3: 419–426

    Article  Google Scholar 

  7. Dat JF, Pellinen R, Beeckman T, Cotte BVD, Langebartels C, Kangasjarvi J, Inze D, Breusegem FV (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J33: 621–632

    PubMed  Article  CAS  Google Scholar 

  8. Ecker JR (1995) The ethylene signal transduction pathway in plants. Science268: 667–675

    PubMed  Article  CAS  Google Scholar 

  9. Eliassion L (1975) Effect of indoleacetic acid on the abscisic acid level in stem tissue. Physiol Plant34: 117–120

    Article  Google Scholar 

  10. Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase Da retards abscisic acid-and ethylene-promoted senescence of postharvestArabidopsis leaves. Plant Cell9: 2183–2196

    PubMed  Article  CAS  Google Scholar 

  11. Gepstein S, Sabehi G, Carp M-J, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-asssociated genes. Plant J36: 629–642

    PubMed  Article  CAS  Google Scholar 

  12. Greenberg JT (1996) Programmed cell death: A way of life for plants. Proc Natl Acad Sci USA93: 12094–12097

    PubMed  Article  CAS  Google Scholar 

  13. Grossmann K, Scheltrup F, Kwiatkowski J, Caspar G (1996) Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants. J Plant Physiol149: 475–478

    CAS  Google Scholar 

  14. Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol124: 1437–1448

    PubMed  Article  CAS  Google Scholar 

  15. Harwood JL (1980) Plant acyl lipids: structure, distribution and analysis,In PK Stumpf, EE Conn, eds, The Biochemistry of Plants: A Comprehensive Treatise, Vol 4. Lipids: Structure and Function. Academic Press, New York, pp 1–55

    Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem193: 265–275

    PubMed  CAS  Google Scholar 

  17. Mittler R, Lam E (1995) Identification, characterization andpurification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell7: 1951–1962

    PubMed  Article  CAS  Google Scholar 

  18. Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis inArabidopsis thaliana: A factor of potential importance for auxin-cytokinin regulated development. Proc Natl Acad Sci USA101: 8039–8044

    PubMed  Article  Google Scholar 

  19. Orzaez D, Granell A (1997) DNA fragmentation is regulated by ethylene during carpel senescence inPisum sativum. Plant J11: 137–144

    Article  CAS  Google Scholar 

  20. Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci8: 335–342

    PubMed  Article  CAS  Google Scholar 

  21. Pellinen Rl, Korhonen MS, Tauriainen AA, Palva ET, Kangasjarvi J (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol130: 549–560

    PubMed  Article  CAS  Google Scholar 

  22. Pennell Rl, Lamb C (1997) Programmed cell death in plants. Plant Cell9: 1157–1168

    PubMed  Article  CAS  Google Scholar 

  23. Quirino BF, Noh Y-S, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci5: 278–282

    PubMed  Article  CAS  Google Scholar 

  24. Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi,In SB Gelvin, RA Schilperoort, eds, Plant Molecular Biology Manual, Ed 2. Kluwer Academic Press, Dordrecht, pp 1–8

    Google Scholar 

  25. Roughan PG, Batt RD (1968) Quantitative analysis of sulpholipid (sulphoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglyceride) in plant tissues. Anal Biochem22: 74–88

    PubMed  Article  CAS  Google Scholar 

  26. Ryerson DE, Heath MC (1996) Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments. Plant Cell8: 393–402

    PubMed  Article  CAS  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A Laboratory Manual, Ed 2, Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  28. Sathishkumar R, Manoharan K (1996) Lipid changes due to growth-factor supplements in callus and plasmamembrane enriched fraction of rice cultures. Phytochem43: 1171–1174

    Article  CAS  Google Scholar 

  29. Scheltrup F, Grossmann K (1995) Abscisic acid is a causative factor in the mode of action of the auxinic herbicide quinmerac in cleaver (Galiumaparine L.). J Plant Physiol147: 118–126

    CAS  Google Scholar 

  30. Sembdner G, Atzorn R, Schneider G (1994) Plant hormone conjugation. Plant Mol Biol26: 1459–1481

    PubMed  Article  CAS  Google Scholar 

  31. Thomas H, Stoddart JL (1980) Leaf senescence. Ann Rev Plant Physiol31: 83–111

    Article  CAS  Google Scholar 

  32. Wagner H, Lissan A, Holzi J, Horhammer L (1962) Estimation of inorganic phosphate in perchloric acid digest of phospholipids. J Lipid Res3: 177–180

    Google Scholar 

  33. Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell14: S131-S151

    PubMed  CAS  Google Scholar 

  34. Wang X (2000) Multiple forms of phospholipase D in plants: The gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res39: 109–149

    PubMed  Article  CAS  Google Scholar 

  35. Wang X (2001) Plant phospholipases. Ann Rev Plant Physiol Plant Mol Biol52: 211–231

    Article  CAS  Google Scholar 

  36. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol53: 247–273

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kumariah Manoharan or Thirupathi Karuppanapandian or Pritam Bala Sinha or Rajendra Prasad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manoharan, K., Karuppanapandian, T., Sinha, P.B. et al. Membrane degradation, accumulation of Phosphatidic acid, stimulation of catalase activity and nuclear DNA fragmentation during 2,4-d-induced leaf senescence in mustard. J. Plant Biol. 48, 394–403 (2005). https://doi.org/10.1007/BF03030581

Download citation

Keywords

  • AgNO3
  • 2,4-D
  • Indian mustard
  • membrane lipids
  • nuclear DNA
  • phosphatidic acid