Skip to main content
Log in

β-Glucan synthetase II activity upon callose formation in the flower ofArabidopsis thaliana

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Callose formation was observed in the pollens during flower development and pollen tube grown in the pistil ofA. thaliana. The accumulation of callose occurred in the tetrad in the flower bud and pollen tube. Therefore, the activity of β-glucan synthetase II (GS II), which is responsible for synthesizing the callose, was measured in the flowers on the same developmental stages. The enzyme activity was increased by about 10% while the level of callose contents was increased by about 70% in tetrads. Then, callose accumulation was increased during pollen tube growth by about 30% higher than the other stages and enzyme activity was detected, 30% more too. These results suggest that callose plays an important role in the growth of pollen and pollen tube by increasing GS II activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Cerenius, L. and K. Soderhael. 1984. Isolation and properties of β-glucan synthetase from the aquatic fungus,Aphanomyces astaci.Plant. Physiol. 60: 247–252.

    Article  CAS  Google Scholar 

  • Chappie, C.C.S., T. Vogt, B.E. Ellis and C.R. Som-ervelle. 1992. AnArabidopsis mutant defective in the general phenylpropanoid pathway.Plant Cell. 4: 1413–1424.

    Article  Google Scholar 

  • Delmer, D.P., M. Thelen, M.P.F. Marsden. 1984. Regulatory mechanisms for the synthesis of β-glucans in plants.In W.M. Duffer and S. Bartnicki-Garcia (eds.). Structure, Function and Biosynthesis of Plant Cell Walls. American Society of Plant Physiologists, Rock-ville, M.D. pp. 133–149.

    Google Scholar 

  • Eschrich, W. 1975. Sealing systems in phloem.In M.H. Zimmermann and J.A. Milburn (eds.). Encyclopedia of Plant Physiology, Vol. 1. Springer-Verlag, Berlin, pp. 39–56.

    Google Scholar 

  • Feder, N. and T.P. O’Brien. 1968. Plant microtechnique: Some principles and new methods.Amer. J. But. 55: 123–142.

    Article  Google Scholar 

  • Fincher, G.B. and B.A. Stone. 1981. Metabolism of non-cellulosic polysaccharides.In W. Tanner and FA. Loewus (eds.). Encyclopedia of plant physiology, Vol. 13B. springer-verlag, Berlin, pp. 68–132.

    Google Scholar 

  • Helsper, J.P.F.G., J.H. Veerkamp and M.M.A. Sassen. 1977. p-Glucan synthetase activity in golgi vesicles ofPetunia hybrida.Planta.133: 303–308.

    Article  CAS  Google Scholar 

  • Herth, W., W.W. Franke, H. Bittiger, A. Kuppel and G. Keilich. 1974. Alkali-resistant fibrils of β-1,3 and β-1,4-glucans: Structural polysaccharides in the pollen tube wall ofLillium longiflorum.Cytobiologie. 9: 344–367.

    CAS  Google Scholar 

  • Heslop-Harrison, J. and A. Mackenzie. 1967. Autoradiography of soluble [2-14C] thymidine derivatives during meiosis and microsporogenesis inLilium anthers.J. Cell Sci. 2: 387–400.

    PubMed  CAS  Google Scholar 

  • Ian, E.B., M. Lacobucci and W.B. Shirley. 1996. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis.Plant Cell. 8: 1013–1025.

    Google Scholar 

  • Kauss, H. 1985. Callose biosynthesis as a Ca24-regulated process and possible relations to the induction of other metabolic changes.J. Cell Sci. 2: 89–103.

    CAS  Google Scholar 

  • Kim, V.S., K.S. Song and H.S. Cheong. 1996. Effects of flavonoids on pollen tube growth inArabidopsis thaliana.J. Plant Biol. 39(4): 273–278.

    CAS  Google Scholar 

  • Kohle, H., W. Jeblick, F. Poten, W. Blashek and H. Kauss. 1985. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process.Plant Physiol. 80: 7–13.

    Google Scholar 

  • Koorneef, M. 1990. Mutations affecting the testa color inArabidopsis.Arabidopsis Info. Serv. 27: 1–4.

    Google Scholar 

  • Labarca, C. and F. Loewus. 1972. The nutritional role of pistil exudate in pollen tube wall formation onLillium longiflorum. I. Utilization of injected stigmatic exudate.Plant Physiol. 50: 7–14.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randll. 1951. Protein measurement with the folin phenol reagent.J. Bio. Chem. 193: 265–275.

    CAS  Google Scholar 

  • Luttenegger, G. and D.J. Mevins. 1985. Transient nature of a (l-3),(l-4)-P-glucan inlea mays coleoptile cell walls.Plant Physiol. 11: 175–178.

    Article  Google Scholar 

  • Malho, R., N.D. Read, M.S. Pais and A.J. Trewavas. 1994. Role of cytosolic free calcium in the reorientation of pollen tube growth.Plant. J. 5: 331–341.

    Article  CAS  Google Scholar 

  • Malho, R., N.D. Read, M.S. Pais and A.J. Trewavas. 1995. Calcium channel activity during pollen tube growth and reorientation.Plant Cell. 7: 1173–1184.

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas, J.P. 1970. A new intermediate in plant cell wall synthesis.Bioehem. Biophys. Res. Commun. 14: 142–149.

    Article  Google Scholar 

  • Miller, D.B., D.A. Callaham, D.J. Gross and P.K. Hepl-er. 1992. Free Ca2+ gradient in growing pollen tubesof Lilium.J. Cell Sci. 101: 7–12.

    CAS  Google Scholar 

  • Morrow, D.L. and W.J. Lucas. 1986. (1→3)-β-Glucan synthetase from sugar beet.Plant Physiol. 81: 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Obermeyer, G. and M.H. Weisenseel. 1991. Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes.Eur. J. Cell Biol. 56: 319–327.

    PubMed  CAS  Google Scholar 

  • Pierson, E.S., D.D. Miller, D.A. Callaham, A.M. Shipley, B.A. Rivers, M. Cresti and P.K. Hepler. 1994. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: Effect of BAPTA-type buffers and hypertonic media.Plant Cell. 6: 1815–1828.

    Article  PubMed  CAS  Google Scholar 

  • Rae, A.L., P.J. Harris, A. Bacic and A.E. Clarke. 1985. Composition of the cell walls ofNicotiana alata Link et Otto pollen tubes.Planta 166: 128–133.

    Article  CAS  Google Scholar 

  • Rathore, K.S., R.J. Cork and K.R. Robinson. 1991 A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes.Dev. Biol. 148: 612–619.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D.G. and H. Depta. 1988. Coated vesicles.Ann. Rev. Plant Physiol. 39: 53–99.

    Article  CAS  Google Scholar 

  • Schneider, H. 1960. Sectioning and staining pathological phloem.Stain Technology. 35: 123–127.

    PubMed  CAS  Google Scholar 

  • Stieglitz, H. 1977. Role of β-1,3-glucanase in postmeiotic microspore release.Dev. Biol. 57: 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Stone, B.A. 1984. Noncellulosic β-glucans in cell walls.In Structure, Function, and Biosynthesis of Plant Cell Walls. W.M. Dugger and S. Bartnicki-Garcia (eds.). Waverly Press, Baltimore, pp. 52–74.

    Google Scholar 

  • Stone, B.A., N.A. Evans, I. Bonig and A.E. Clarke. 1984. The application of Sirofluor, a chemically defined fluorochrome from aniline blue for the his-tochemical detection of callose.Protoplasma 122: 191–195.

    Article  CAS  Google Scholar 

  • Vogt, T., P. Pollak.,N. Tarlyn and L.P. Taylor. 1994 Pollination or wound-induced kaempferol accumulation inPetunia stigmas enhances seed production.Plant Cell 6: 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Waterkeyn, L. 1962. Les parois microsporocytaires de nature callosique chezHcllcborus etTradescantia.Cellule. 62: 225–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Kim, Y., Cheong, H. et al. β-Glucan synthetase II activity upon callose formation in the flower ofArabidopsis thaliana . J. Plant Biol. 41, 110–115 (1998). https://doi.org/10.1007/BF03030397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030397

Keywords

Navigation