High-frequency regeneration and transformation ofRaphanus savus

Abstract

We have achieved high-frequency shoot regeneration in radish(Raphanus sativus). Cotyledon explants from four-day-old seedlings were suitable for the effective induction of shoots on Murashige and Skoog’s (MS) medium containing 3.0 mg/L kinetin. We also determined that it was essential to include 1- to 2-ram petiole segments with the cotyledons for efficient induction. When the regenerated shoots were transferred to an MS liquid medium containing 0.1 mg/L NAA, roots formed within four weeks, and normal plant development ensued. We established a transformation protocol using anAgrobacterium binary vector that carries the GUS reporter gene. Preculturing the explants for I d in an MS medium containing 3.0 mg/L kinetin also increased efficiency. Five days of cocultivation proved best for delivering T-DNA into radish. Transformation frequencies of up to 52% were obtained in shoot induction media that contained 3.0 mg/L kinetin.

This is a preview of subscription content, log in to check access.

Literature Cited

  1. Arokiaraj P, Yeang HY, Cheong KF, Hamzah S, Jones H, Coomber S, Charlwood BV (1998) CaMV 35S promoter directs β-glucuronidase expression in the laticiferous system of transgenicHevea brasiliensis. Plant Ceil Rep17: 621–625

    Article  CAS  Google Scholar 

  2. Biondi S, Thorpe TA (1982) Growth regulator effects, metabolite changes, and respiration during shoot initiation in cultured cotyledon explantsof Pinus radiata. Bot Gaz143: 20–25

    Article  CAS  Google Scholar 

  3. Charest PJ, Holbrook LA, Gabard J, lyer VN, Miki BL (1988) Agrobacterium-mediated transformation of thin cell layer explants fromBrassica napus L. Theor Appl Genet75: 438–445

    Article  Google Scholar 

  4. Curtis IS, Nam HG (2001) Transgenic radish(Raphanus sativus L.Iongipinnatus Bailey) by floral-dip method- plant development and surfactant are important in optimizing transformation efficiency. Transgen Res10: 363- 377

    Article  CAS  Google Scholar 

  5. Eapen S, George L (1994)Agrobacterium tumefaciens mediated gene transfer in peanut(Arachis hypogaea L.). Plant Cell Rep13: 582–586

    Article  CAS  Google Scholar 

  6. Goh CJ, Lakshmanan P, Loh CS (1994) High frequency direct shoot bud regeneration from excised leaves of mangosteen(Garcinia mangostana L.) Plant Sci101: 173–180

    Article  CAS  Google Scholar 

  7. Hussey G (1976) Propagation of Dutch iris by tissue culture. Scient Hortic4: 163–165

    Article  Google Scholar 

  8. Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep5: 387–405

    Article  CAS  Google Scholar 

  9. Jeong WJ, Min SR, Liu JR (1995) Somatic embryogenesis and plant regeneration in tissue culture of radish(Raphanus sativus L.). Plant Cell Rep14: 648–651

    Article  CAS  Google Scholar 

  10. Kim NR (1997) Plant regeneration via callus culture from hypocotyl explants and organogenesis from cotyledon explants of radish(Raphanus sativus). Master thesis. The Catholic University of Korea, Puchon

    Google Scholar 

  11. Matsubara S, Hegazi H H (1990) Plant regeneration from hypocotyl callus of radish. HortScience25: 1286–1288

    CAS  Google Scholar 

  12. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation ofBrassica napus usingAgrobacterium vectors. Plant Cell Rep8: 238–242

    Article  CAS  Google Scholar 

  13. Moriconi DN, Conci VC, Nome SF (1989) In vitro plantlet regeneration from callus in garlic(Alliurn sativum L.). Øyton49: 97–103

    CAS  Google Scholar 

  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant15: 473–479

    Article  CAS  Google Scholar 

  15. Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of ß-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physio131: 805–813

    CAS  Google Scholar 

  16. Paek KY, Chandler SF, Thorpe TA (1987) Micropropagation ofRaphanus sativus L. var.longipinnatus (Japanese radish) cv. Gungjung. Plant Cell Tiss Org Cult9: 159–165

    Article  Google Scholar 

  17. Park MC, Son SI, Kim JC (1996) Plant regeneration from hypocotyl-derived callus of radish(Raphanus sativus). Kor J Plant Tiss Cult23: 243–247

    Google Scholar 

  18. Pua EC, Sire GE, Chi GL, Kong LF (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish(Raphanus sativus L. var.longipinnatus Bailey)in vitro. Plant Cell Rep15: 685–690

    Article  CAS  Google Scholar 

  19. Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988) Transformation ofBrassica napus L. usingAgrobacterium turnefaciens: Developmentally regulated expression of a reintroduced napin gene. Theor Appl Genet75: 685–694

    Article  CAS  Google Scholar 

  20. Radke SE, Turner JC, Facciotti D (1992) Transformation and regeneration ofBrassica rapa usingAgrobacterium tumefaciens. Plant Cell Rep11: 499–505

    Article  Google Scholar 

  21. TakahataY, Komatsu H, Kaizuma N (1996) Microspore culture of radish(Raphanus sativus L.):I Influence of genotype and culture conditions on embryogenesis. Plant Cell Rep16: 163–166

    Google Scholar 

  22. Voisey CR, White D, Dudas B, Appleby TD, Ealing PM, Scott AG (1994) Agrobacterium-mediated transformation of white clover using direct shoot organogenesis. Plant Cell Rep13: 309–314

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Na Ryung Kim or Gynheung An or Min Chul Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, N.R., An, G. & Park, M.C. High-frequency regeneration and transformation ofRaphanus savus . J. Plant Biol. 44, 231–235 (2001). https://doi.org/10.1007/BF03030357

Download citation

Keywords

  • Agrobacterium
  • GUS
  • plant regeneration
  • radish (Raphanus sativus)
  • transformation