Skip to main content
Log in

Activation of ascorbate-glutathione cycle inArabidopsis leaves in response to aminotriazole

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Aminotriazole(AT)-induced changes in growth, hydrogen peroxide content and activities of H2O2-scavenging antioxidant enzymes were investigated in the growing leaves ofArabidopsis plants (Arabidopsis thaliana cv Columbia). Catalase activity of rosette leaves was reduced by 65% with an application of 0.1 mM AT (a herbicide known as a catalase inhibitor), whereas the leaf growth and H2O2 content were almost unaffected. However, an approximate 1.6 to 2-fold increase in cytosolic ascorbate peroxidase (APX) activity concomitant with a substantial activation of glutathione reductase (GR) (approx. 22% increase) was observed during leaf growth in the presence of 0.1 mM AT. The activity of cytosolic APX in leaves was also increased by 1.8-fold with an application of exogenous 2 mM paraquat (an inducer of H2O2 production in plant cells) in the absence of AT. These results collectively suggest that (a) cytosolic APX and GR operate to activate an ascorbate-glutathione cycle for the removal of H2O2 under severe catalase deactivation, and (b) the expression of APX seems to be regulated by a change of the endogenous H2O2 level in leaf cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, M.D., T.K. Prasad and C.R. Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings.Plant Physiol. 109: 1247–1257.

    PubMed  CAS  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris.Plant Physiol. 24: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Asada, K. 1984. Chloroplasts: Formation of active oxygen and its scavenging.Methods Enzynmol. 105: 422–429.

    Article  CAS  Google Scholar 

  • Asada, K. 1992. Ascorbate pcroxidase-a hydrogen peroxide-scavenging enzyme on plants.Physiol. Plant. 85: 235–241.

    Article  CAS  Google Scholar 

  • Bernt, E. and H.U. Bergmeyer. 1974. Inorganic peroxides.In Methods of enzymatic analysis, Vol. 4, H.U. Bergmcyer (ed.). Academic Press, N.Y., pp. 2246–2248.

    Google Scholar 

  • Chen, J. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular properties.Plant Cell Physiol. 30: 987–998.

    CAS  Google Scholar 

  • Dalton, D.A., L. Langeberg and N.C. Treneman. 1993. Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules.Physiol. Plant. 87: 365–370.

    Article  CAS  Google Scholar 

  • Feierabend, J. and B. Schubert. 1978. Comparative investigation of the action of several chlorosisinducing herbicides on the biogenesis of chloroplasts and leaf microbodies.Plant Physiol. 61: 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, I.B. and S.J. Dunning. 1986. Effect of 3-amino-1.2,4-triazole, a catalase inhibitor, on peroxide content of suspension-cultured pear fruit cells.Plant Sci. 43: 7–11.

    Article  CAS  Google Scholar 

  • Foyer, C.H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism,Planta 133: 21–25.

    Article  Google Scholar 

  • Foyer, C.H., M. Lelandais and K.J. Kunert. 1994. Photooxidative stress in plants.Physiol. Plant. 92: 696–717.

    Article  CAS  Google Scholar 

  • Foyer, C.H., P. Descourvieres and K.J. Kunert. 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants.Plant Cell Environ. 17: 507–523.

    Article  CAS  Google Scholar 

  • Heim, D.R. and I.M. Larrinua. 1989. Primary site of action of amitrole inArahidopsis thaliana involves inhibition of root elongation but not histidine or pigment biosynthesis.Plant Physiol. 91: 1226–1231.

    Article  PubMed  CAS  Google Scholar 

  • Hiscox, J.D. and G.F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration.Can. J. Rot. 57: 1332–1334.

    CAS  Google Scholar 

  • Klapheck, S., I. Zimmer and H. Cosse. 1990. Scavenging of hydrogen peroxide in the endosperm ofRicinus communis by ascorbate peroxidase.Plant Cell Physiol. 31: 1005–1013.

    CAS  Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • MacRae, E.A. and O.B. Ferguson. 1985. Changes in catalase activity and hydrogen peroxide concentration in plants in response to low temperature.Physiol. Plant. 65: 51–56.

    Article  CAS  Google Scholar 

  • Margoliash, E., A. Novogrodsky and A. Schejter. 1960. Irreversible reaction of 3-amino-l,2,4-triazole and related inhibitors with the protein of catalase.Biochem. J. 74: 339–348.

    PubMed  CAS  Google Scholar 

  • Mittler, R. and B.A. Zilinskas. 1991. Purification and characterization of pea cytosolic ascorbate peroxidase.Plant Physiol. 97: 962–968.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.Plant Cell Physiol. 22: 867–880.

    CAS  Google Scholar 

  • Polle, A., T. Otter and F. Seifert. 1994. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.).Plant Physiol. 106: 53–60.

    PubMed  CAS  Google Scholar 

  • Prasad, T.K., M.D. Anderson, B.A. Martin and C.R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide.Plant Cell. 6: 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, T.K. 1997. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings.Plant Physiol. 114: 1369–1376.

    PubMed  CAS  Google Scholar 

  • Price, A.H., A. Taylor, S.J. Ripley, A. Griffiths, A.J. Trewavas and M.R. Knight. 1994. Oxidative signals in tobacco increase cytosolic calcium.Plant Cell 6: 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  • Puntarulo, S., R.A. Sanchez and A. Boveris. 1988. Hydrogen peroxide metabolism in soybean embryonic axis at the onset of germination.Plant Physiol. 86: 626–630.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M.V., B.A. Hale and D.P. Ormrod. 1995. Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide.Plant Physiol. 109: 421–432.

    PubMed  CAS  Google Scholar 

  • Rao, M.V., G. Paliyath and D.P. Ormrod. 1996. Ultraviolct-B-and ozone-induced biochemical changes in antioxidant enzymes ofArahidopsis thaliana.Plant Physiol. 110: 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Scandalios, J.G., E.H. Liu and M.A. Campeau. 1972. The effect of intragenic and intergenic complementation on catalase structure and function in maize: a molecular approach to heterosis.Arch. Biophys. 153: 695–705.

    Article  CAS  Google Scholar 

  • Singer, S.R. and C.N. McDaniel. 1982. Transport of the herbicide 3-amino-l,2,4-triazole by cultured tobacco cells and leaf protoplasts.Plant Physiol. 62: 1382–1386.

    Article  Google Scholar 

  • Ushimaru, T., Y. Maki, S. Sano, K. Koshiba, K. Asada and H. Tsuji. 1997. Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water.Plant Cell Physiol. 38: 541–549.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, KS., Lim, CJ., Han, TJ. et al. Activation of ascorbate-glutathione cycle inArabidopsis leaves in response to aminotriazole. J. Plant Biol. 41, 155–161 (1998). https://doi.org/10.1007/BF03030248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030248

Navigation