Skip to main content

Advertisement

Log in

Positive inotropic effects of an acth analogue (ACTH 1–17) on myocardial performance

  • Original Contributions
  • Published:
Ricerca in clinica e in laboratorio

Summary

The aim of the present investigation was to study the effects of a single 100-µg i.v. administration of the synthetic heptadecapeptide [β-Ala1-Lys17]ACTH1–17-4-amino-N-butylamide (ACTH 1–17) on the left ventricular performance. The systolic time intervals (STI) were recorded in 20 healthy adult young subjects (10 treated with ACTH 1–17 and 10 receiving placebo) before as well as 20, 40, 60 and 80 min after the i.v. ACTH 1–17 or placebo infusion. The STI were recorded immediately after blood withdrawal for measuring cortisol, aldosterone, adrenaline and noradrenaline plasma levels. A highly significant statistical difference was demonstrated for preejection period (PEP) and preejection period/left ventricular ejection time (PEP/LVET) ratio between subjects treated with ACTH 1–17 and subjects receiving placebo. As expected, a significant increase of cortisol and aldosterone plasma levels was observed in subjects treated with ACTH 1–17. The difference of adrenaline and noradrenaline plasma levels was statistically highly significant between subjects treated with ACTH 1–17 and those receiving placebo. The lack of increase in PEP and PEP/LVET ratio recorded in subjects treated with ACTH 1–17 is consistent with an increased left ventricular contractile performance. An increased plasma catecholamine release is postulated as the mechanism of this improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelrod J.: ACTH and related peptides: structure, regulation and action — Ann. N.Y. Acad. Sci.297, 275, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Cousineau D., Lapointe L., Champlain J.: Circulating catecholamines and systolic time intervals in normotensive and hypertensive patients with and without left ventricular hypertrophy — Amer. Heart J.96, 227, 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Da Prada M., Zürcher G.: Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the fentomole range — Life Sci.19, 1161, 1976.

    Article  PubMed  Google Scholar 

  4. Fenske M., Fuchs E., Probst B.: Corticosteroid, catecholamine and glucose plasma levels in rabbits after repeated exposure to a novel environment or administration of ACTH 1–24 or insulin — Life Sci.31, 127, 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Garrard J. A. Jr.,Weissler A. M., Doge H. T.: The relationship of alterations in systolic time intervals to ejection fraction in patients with cardiac disease — Circulation42, 455, 1970.

    PubMed  Google Scholar 

  6. Geiger R.: Synthese eines Heptadecapeptids mit hoher adrenocorticotroper Wirkung — Liebig’s Ann. Chem.750, 165, 1971.

    CAS  Google Scholar 

  7. Gerwitz G. P., Kvetnansky R., Weise V. K., Kopin I.: Effects of hypophysectomy on adrenal dopamine-β-hydroxylase activity in the rat — Molec. Pharmacol.7, 163, 1971.

    Google Scholar 

  8. Harris W. S., Schoenfeld C. D., Weissler A. M.: Effects of adrenergic receptor activation and blockade on the systolic preejection period, heart rate and arterial pressure in man — J. clin. Invest.46, 1704, 1967.

    PubMed  CAS  Google Scholar 

  9. Levi G. F., Quadri A., Ratti S., Basagni M.: Preclinical abnormality of left ventricular function in chronic alcoholics — Brit. Heart J.39, 35, 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Levi G. F., Ratti S., Cardone G., Basagni M.: On the reliability of systolic time intervals — Cardiology69, 157, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Lindner E., Schölkens B.: ACTH and α-MSH: cardiovascular and antiarrhythmic properties — Arch. int. Pharmacodyn.280, 19, 1974.

    Google Scholar 

  12. Martin C. E., Shaver J. A., Thompson M. E., Reddy P. S., Leonard J. J.: Direct correlation of external systolic time intervals with internal indices of left ventricular function in man — Circulation44, 419, 1971.

    PubMed  CAS  Google Scholar 

  13. Müller R. A., Thoenen H., Axelrod J.: Effects of pituitary hormones and ACTH on the maintenance of the basal tyrosine hydroxylase activity in the rat adrenal gland — Endocrinology86, 751, 1970.

    Google Scholar 

  14. Reinberg A., Brière L., Fraboulet G., Guillemant J., Dupont W., Guillet P., Nicolai A.: Clinical chronopharmacology of ACTH 1–17. III. Effects on fatigue, oral temperature, heart rate, grip strength and bronchial patency — Chronobiologia8, 101, 1981.

    PubMed  CAS  Google Scholar 

  15. Sandow J., Geiger R., Vogel H. G.: Pharmacological effects of a short chain ACTH analogue — Naunyn-Schmiedeberg’s Arch. exp. Pathol. Pharmakol.297, 65, 1977.

    Google Scholar 

  16. Schechter E., Wilson M. F., Kong Y. S.: Physiological responses to epinephrine infusion: the basis for a new stress test for coronary artery disease — Amer. Heart J.105, 554, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Weinshilboum R., Axelrod J.: Dopamine-β-hydroxylase activity in the rat after hypophysectomy — Endocrinology87, 894, 1970.

    Article  PubMed  CAS  Google Scholar 

  18. Weissler A. M., Harris W. S., Schoenfeld C. D.: Systolic time intervals in heart failure in man — Circulation37 149, 1968.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, G., Signorini, C., Tosoni, S. et al. Positive inotropic effects of an acth analogue (ACTH 1–17) on myocardial performance. La Ricerca in Clin. Lab. 15, 349–356 (1985). https://doi.org/10.1007/BF03029150

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03029150

Key-words

Navigation