Skip to main content
Log in

Rapid sintering of ultra fine WC and WC-Co hard materials by high-frequency induction heated sintering and their mechanical properties

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Using a high-frequency induction heated sintering (HFIHS) method, the densification of binderless WC and WC-x wt.%Co (x=8, 10, 12) hard materials were accomplished using an ultra fine powder of WC and WC-Co. The advantages of this process are that it allows very quick densification close to the theoretical density and prohibits grain growth in nano-structured materials. Nearly fully dense WC and WC-Co with a relative density of up to 99.9% could be obtained with a simultaneous application of 60 MPa pressure and induced current (within 2 min) without a significant change in grain size. The average grain size of WC was approximately 270 nm for WC-x wt.%Co. The hardness and fracture toughness of the dense WC and WC-Co composites produced by HFIHS were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hirata, H. Zheng, and M. Yoshikawa, Diamond and Related Mater. 7, 1669 (1998).

    Article  CAS  Google Scholar 

  2. M. Sherif El-Eskandarany, J. Alloys and Compounds 305, 225 (2000).

    Article  CAS  Google Scholar 

  3. L. Fu, L. H. Cao, and Y. S. Fan, Scripta materialia 44, 1061 (2001).

    Article  CAS  Google Scholar 

  4. K. Niihara and A. Nikahira, Advanced Structural Inorganic Composite, p. 1, Elsevier Scientific Publishing Co., Italy (1990).

    Google Scholar 

  5. S. Berger, R. Porat, and R. Rosen, Progr. Mater. 42, 311 (1997).

    Article  Google Scholar 

  6. B. K. Kim, G. H. Ha, and D. W. Lee, J. Mater. Proc. Tech. 63, 317 (1997).

    Article  Google Scholar 

  7. M. Sommer, W. D. Schubert, E. Zobetz and P. Warbichler, Int. J. of Refractory Met. Hard Mater. 20, 41 (2002).

    Article  CAS  Google Scholar 

  8. S. I. Cha, S. H. Hong, and B. K. Kim, Mater. Sci. Eng. A 351, 31 (2003).

    Article  CAS  Google Scholar 

  9. S. I. Cha, S. H. Hong, G. H. Ha and B. K. Kim, Scripta mater. 44, 1535 (2001).

    Article  CAS  Google Scholar 

  10. E. Y. Gutmanas, New Materials by Mechanical Alloying Techniques (eds. E. Arzt and L. Schultz), p. 1, Ir Pubns Ltd, Oberursel (1989).

    Google Scholar 

  11. M. J. Mayo, D. J. Chen, and D. C. Hague, Consolidation of nanocrystalline materials by compaction and sintering, in Nanomaterials: Synthesis, Properties and Applications (eds. A. S. Edelstein and R. C. Cammarata), p. 1, Institute of Physics Pub., USA (1998).

    Google Scholar 

  12. H. C. Kim, I. J. Shon, and Z. A. Munir, J. Mater. Sci. 40, 2849 (2005).

    Article  ADS  CAS  Google Scholar 

  13. H. C. Kim, D. Y. Oh, and I. J. Shon, Met. Mater.-Int. 12, 393 (2006).

    Article  CAS  Google Scholar 

  14. K. Jia, T. E. Fischer, and G. Gallois, Nanostruct. Mater. 10, 875 (1998).

    Article  CAS  Google Scholar 

  15. J. H. Han and D. Y. Kim, Acta mater. 46, 2021 (1998).

    Article  CAS  Google Scholar 

  16. G. S. Upadhyaya, Materials & Design 22, 483 (2001).

    Article  CAS  Google Scholar 

  17. A. V. Shatov, S. A. Firstov, and I. V. Shatova, Mater. Sci. Eng. A 242, 7 (1998).

    Article  Google Scholar 

  18. J. Fleischer, T. Masuzawa, J. Schmidt, and M. Knoll, J. of Mater. Proce. Tech. 149, 246 (2004).

    Article  CAS  Google Scholar 

  19. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  20. L. Sl. Sigl, P. A. Mataga, B. J. Dalgleish, R. M. McMeeking, and A. G. Evans, Acta metall. 36, 945 (1988).

    Article  CAS  Google Scholar 

  21. V. Richter and M. V. Ruthendorf, Int. J. Refract. Meta. Hard Mater. 17, 141 (1999).

    Article  CAS  Google Scholar 

  22. G. Gille, Doctoral thesis, Akademie der Wissenschaften, Germany (1977).

  23. E. A. Almond and B. Roebuck, Mater. Sci. Eng. A 105/106, 237 (1988).

    Article  Google Scholar 

  24. H. Engqvist, G. A. Botton, N. Axen, and S. Hogmark, Int. J. Refract. Met. Hard Mater. 16, 309 (1998).

    Article  Google Scholar 

  25. H. Engqvist, G. A. Botton, N. Axen and S. Hogmark, J. Am. Ceram. Soc. 83, 2491 (2000).

    Article  CAS  Google Scholar 

  26. C. D. Park, H. C. Kim, I. J. Shon and Z. A. Munir, J. Am. Ceram. Soc. 85, 2670 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jin Shon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HC., Shon, IJ., Jeong, IK. et al. Rapid sintering of ultra fine WC and WC-Co hard materials by high-frequency induction heated sintering and their mechanical properties. Met. Mater. Int. 13, 39–45 (2007). https://doi.org/10.1007/BF03027821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027821

Keywords

Navigation