Skip to main content
Log in

Microstructures of functionally graded materials fabricated by centrifugal solid-particle andin-situ methods

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Functionally graded materials (FGMs) belong to a relatively new class of inhomogeneous composite materials, in which the composition and/or microstructure undergo a gradual change along some directions. In this review article, the microstructures and composition gradients in Al/SiC, Al/Shirasu (volcanic eruptions commonly found in south Kyushu in Japan), Al/Al3Ti, Al/Al3Ni, Al/Al2Cu FGMs have been investigated. The Al/SiC, Al/Shirasu and Al/Al3Ti FGMs are fabricated by the centrifugal solid particle method where the distribution particles of SiC, Shirasu and Al3Ti are solids in the melts. On the other hand, Al/Al3Ni and Al/Al2Cu FGMs are fabricated by the centrifugalin-situ method where Al/Al3Ni and Al/Al2Cu systems have lower liquidus temperatures than the processing temperatures. The feature of Al/(Al3Ti−Al3Ni) hydrid FGM, which is fabricated by a method combining both the centrifugal solid-particle andin-situ methods, is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh and A. Mortensen,Fundamentals of Functionally Graded Materials, Processing and Thermomechanical Behaviour of Graded Metals and Metal-ceramic Composites, IOM Communications Ltd, London (1998).

    Google Scholar 

  2. Functionally Graded Materials, Design, Processing and Applications (eds., Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford), Kluwer Academic Publishers, Boston, MA (1999).

    Google Scholar 

  3. Y. Fukui,JSME Inst. J. Series III 34, 144 (1991).

    Google Scholar 

  4. Y. Watanabe and Y. Fukui,Aluminum Trans. 2, 195 (2000).

    CAS  Google Scholar 

  5. Y. Watanabe and Y. Fukui,Rec. Res. Devel. Metall. Mater. Sci. 4, 51 (2000).

    CAS  Google Scholar 

  6. Y. Fukui and Y. Watanabe,Metall. Mater. Trans. A 27, 4145 (1996).

    Article  Google Scholar 

  7. Z. M. Salim, N. Yamanaka, Y. Watanabe, Y. Fukui, and S. Nunomura,Advanced Materials and Processing vol. 2,Proceedings of PRICM-2, p. 1739 The Korean Institute of Metals and Materials (1995).

  8. Y. Watanabe, N. Yamanaka, and Y. Fukui,Z. Metallkd. 88, 717 (1997).

    CAS  Google Scholar 

  9. Y. Watanabe, N. Yamanaka, and Y. Fukui,Metall. Mater. Trans. A 30, 3253 (1999).

    Article  Google Scholar 

  10. Y. Watanabe, H. Eryu, and K. Matsuura,Acta mater. 49, 775 (2001).

    Article  CAS  Google Scholar 

  11. Y. Fukui, K. Takashima, and C. B. Ponton,J. Mater. Sci. 29, 2281 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Y. Fukui, N. Yamanaka, Y. Enokida,Composites Part B 28, 37 (1997).

    Article  Google Scholar 

  13. Y. Watanabe, R. Sato, K. Matsuda, and Y. Fukui,Sci. Eng. Comp. Mater. 11, 185 (2004).

    CAS  Google Scholar 

  14. Y. Watanabe and S. Oike,Acta mater. 53, 1631 (2005).

    Article  CAS  Google Scholar 

  15. Y. Watanabe and T. Nakamura,Intermetallics 9, 33 (2001).

    Article  CAS  Google Scholar 

  16. Metals Handbook, 8th ed., vol. 5, p. 252, American Society for Metals, Metals Park, OH (1970).

  17. T. B. Massalski, Editor-in-Chief:Binary Alloy Phase Diagrams, Second Edition Plus Updates on CD-ROM Version 1.0, ASM International, Materials Park, OH (1996).

    Google Scholar 

  18. Y. Watanabe, N. Yamanaka, and Y. Fukui,Composites Part A 29, 595 (1998).

    Article  Google Scholar 

  19. Y. Watanabe, A. Kawamoto, and K. Matsuda,Comp. Sci. Tech. 62, 881 (2002).

    Article  CAS  Google Scholar 

  20. S. H. McGee and R. L. McCullough,J. Appl. Phys. 55, 1394 (1984).

    Article  ADS  Google Scholar 

  21. D. Y. Ju, Y. Oshika, and T. Inoue,J. Soc. Mat. Sci., Jpn 40, 144 (1991).

    CAS  Google Scholar 

  22. R. R. Miller,Physical Properties of Liquid Metals, in Lyon RN (Editor-in-Chief) Liquid-Metals Handbook, 2nd ed., p. 38, U. S. Government Printing Office, Washington D.C. (1952).

    Google Scholar 

  23. P. J. Wray,Met. Trans. 5, 2602 (1974).

    Article  CAS  Google Scholar 

  24. H. L. Frisch and R. Simha,The viscosity of colloidal suspensions and macromolecular solutions. In Rheology, Theory and applications, p. 525, Polytechnic Institute of Brooklyn, New York (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y., Kim, I.S. & Fukui, Y. Microstructures of functionally graded materials fabricated by centrifugal solid-particle andin-situ methods. Met. Mater. Int. 11, 391–399 (2005). https://doi.org/10.1007/BF03027510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027510

Keywords

Navigation