Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength Steel

Abstract

Electrochemical properties and mechanical properties of welded high strength steel were investigated by the slow strain rate test (SSRT) method with an applied constant cathodic potential. There was no correlation between maximum tensile strength, yield strength, stress at failure, and hydrogen embrittlement. However, the elongation, time-to-fracture, and strain-to-failure ratio decreased with shifting potential of the negative direction. Elongation, time-to-fracture, and strain-to-failure ratio for the various welding methods displayed the highest values when the potential was −770 mV regardless of post-weld heat treatment (PWHT) conditions. The elongation, time-to-fracture, and amount of dimples by PWHT were increased. The optimum potential region for cathodic protection without hydrogen embrittlement was observed between −770 and (above) −850 mV (SCE) in the post-weld specimens heat treated at 550°C and the as-welded specimens.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. Rothwell M. E. D,Materials Performance 2, 58 (1990).

    Google Scholar 

  2. 2.

    R. K. Singh Raman and J. B. Granmoorthy,Welding research supplement 4, 133 (1995).

    Google Scholar 

  3. 3.

    Tetsunusuke Hasimoto,Boshoku Gijutsu 37, 559 (1988).

    Google Scholar 

  4. 4.

    Onishiyi Masazi,Boshoku Gijutsu 13 7 (1964).

    Google Scholar 

  5. 5.

    A. K. Bhaduri, S. Sujith G. Srinivasan, T. P. S. Gill, and S. L. Mannan,Welding Research Supplement 5, 153 (1995).

    Google Scholar 

  6. 6.

    C. Bloch, J. Hill, and D. Connell,Welding Journal 5, 31 (1997).

    Google Scholar 

  7. 7.

    S. J. Kim and K. M. Moon,Journal of the korea welding society 19, 65 (2001).

    Google Scholar 

  8. 8.

    S. J. Kim, J. K. Kim, and K. M. Moon,Journal of the korea welding society 18, 610 (2000).

    Google Scholar 

  9. 9.

    S. J. Kim, J. K. Kim, and K. M. Moon,Korean Journal of Chemical Engineering 20, 560 (2003).

    Article  CAS  Google Scholar 

  10. 10.

    ASM International,Corrosion,13, 245 (1998).

    Google Scholar 

  11. 11.

    Stress annealing standard and explanation, Japanese high pressure technology association, p. 69, Nikkankyogyoshibunshya (1982).

  12. 12.

    W. Von Baeckmann, W. Schwenk, and W. Prinz,Handbook of Cathodic Corrosion Protection, Gulf Publishing Company, p. 72, Houston (1997).

    Google Scholar 

  13. 13.

    S. J. Kim, T. W. Park, I. O. Shim, J. H. Kim, Y. S. Kim, and K. M. Moon,Journal of the Korea Welding Society 19, 45 (2001).

    Google Scholar 

  14. 14.

    Y. Yamaguchi, H. Nonaka, and K. Yamakawa,Corrosion 53, 147 (1998).

    Google Scholar 

  15. 15.

    H. J. Maier and H. Kaesche,Hydrogen effects on material behavior, p. 3, Japan High Pressure Technology Association, Stress Annealing Committee Section, Japan (1982).

    Google Scholar 

  16. 16.

    F. de Kazinczy,Journal of iron and Steel Institute 177, 85 (1954).

    Google Scholar 

  17. 17.

    A. W. Thompson and J. C. Chesnutt,Metallurgical Transactions A 14, 881 (1983).

    Article  Google Scholar 

  18. 18.

    R. Francis, G. Byme, and G. R. Warbartan,The effect of cathodic protection on duplex stainless steels in sea water, p. 46, An official NACE International Publication (1999).

  19. 19.

    C. D. Beahem,Metallurgical Transactions 3, 437 (1972).

    ADS  Google Scholar 

  20. 20.

    N. Bandyyopadhy, Jun Kameda, and C. J. McMahon, Jr.,Metallurgical Transactions A 14, 881 (1983).

    Article  ADS  Google Scholar 

  21. 21.

    S. J. Kim and K. M. Moon,Met. Mater.-Int. 8, 395 (2002).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seong-Jong Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, SJ., Jang, SK. & Kim, JI. Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength Steel. Met. Mater. Int. 11, 63–69 (2005). https://doi.org/10.1007/BF03027486

Download citation

Keywords

  • slow strain rate test
  • cathodic potential
  • hydrogen embrittlement
  • optimum cathodic protection potential