Deformation behavior of Zr-based bulk metallic glass in an undercooled liquid state under compressive loading

Abstract

High temperature deformation behavior of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk amorphous alloy has been studied in a temperature range between 355 and 460°C under compressive loading after rapid heating. A transition of flow behavior, viz. from, a Newtonian to a non-Newtonian flow, has been reported by many researchers as the temperature is decreased at a given strain rate. In the present study, two different theoretical relations based on a viscous flow model and a transition state theory have been applied to analyze the transition behavior of deformation in terms of viscosity and flow stress. An experimental deformation map was then constructed to specify the boundaries between Newtonian and non-Newtonian flow, based on the relationship between the flow stress and strain rate in an undercooled liquid state. It has further been confirmed that the stress overshoot phenomena can be observed mostly in a non-Newtonian flow regime appearing in an intermediate temperature and strain rate region in this deformation map.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Inoue and A. Takeuchi,Mater. Sci. Eng. A 375–377, 16 (2004).

    Google Scholar 

  2. 2.

    A. Peker and W. L. Johnson,Appl. Phys. Lett. 63, 2342 (1993).

    Article  ADS  Google Scholar 

  3. 3.

    D. S. Sung, O. J. Kwon, E. Fleury, K. B. Kim, J. C. Lee, D. H. Kim, and Y. C. Kim,Met. Mater.-Int. 10, 575 (2004).

    Article  CAS  Google Scholar 

  4. 4.

    W. B. Kim, B. J. Ye, and S. Yi,Met. And Mater Int. 10, 1 (2004).

    Article  Google Scholar 

  5. 5.

    N. Nishiyama and A. Inoue,Appl. Phys. Lett. 80, 568 (2002).

    Article  ADS  CAS  Google Scholar 

  6. 6.

    K. S. Lee, W. Bang, T. K. Ha, S. Ahn, and Y. W. Chang,J. Metastable Nanocryst. Mater. 15–16, 155 (2003).

    Article  Google Scholar 

  7. 7.

    Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto,Acta mater. 46, 253 (1998).

    Article  CAS  Google Scholar 

  8. 8.

    Y. Saotome, T. Hatori, T. Zhang, and A. Inoue,Mater. Sci. Eng. A 304–306, 716 (2001).

    Google Scholar 

  9. 9.

    A. R. Yabari, M. F. de Oliveira, C. S. Kiminami, A. Inoue, and W. J. Botta F.,Mater. Sci. Eng. A (in press).

  10. 10.

    K. S. Lee, T. K. Ha, S. Ahn, and Y. W. Chang,J. Non-cryst. Sol. 317, 193 (2003).

    Article  ADS  CAS  Google Scholar 

  11. 11.

    M. D. Demetriou and W. L. Johnson,Acta mater. 52, 3403 (2004).

    Article  CAS  Google Scholar 

  12. 12.

    P. de Hey, J. Sietsma, and A. van den Beukel,Acta mater. 46, 5873 (1998).

    Article  Google Scholar 

  13. 13.

    M. Cohen and D. Turnbull,J. Chem. Phys. 31, 1164 (1959).

    Article  ADS  CAS  Google Scholar 

  14. 14.

    M. Cohen and G. Grest,J. Non-cryst. Solids 61, 749 (2003).

    Article  ADS  Google Scholar 

  15. 15.

    A. I. Taub,Acta metall. 28, 633 (1980).

    Article  CAS  Google Scholar 

  16. 16.

    A. I. Taub and F. E. Luborsky,Acta metall. 29, 1939 (1981).

    Article  CAS  Google Scholar 

  17. 17.

    W. L. Johnson, J. Lu, and M. D. Demetriou,Intermetallics 10, 1039 (2002).

    Article  CAS  Google Scholar 

  18. 18.

    A. Reger-Leonhard, M. Heilmaier, and J. Eckert,Scripta mater. 43, 459 (2000).

    Article  CAS  Google Scholar 

  19. 19.

    F. Spaepen,Acta metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Won Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, K.S., Chang, Y.W. Deformation behavior of Zr-based bulk metallic glass in an undercooled liquid state under compressive loading. Met. Mater. Int. 11, 53 (2005). https://doi.org/10.1007/BF03027484

Download citation

Keywords

  • bulk metallic glass
  • deformation behavior
  • flow stress
  • Newtonian viscous flow