Driving force for delayed Hydride cracking of zirconium alloys


The effect of hydrogen concentration on the delayed hydride cracking velocity (DHCV) and the threshold stress intensity factor, KIH of a Zr-2.5Nb tube were examined at test temperatures ranging from 100 to 280°C by subjecting compact tension specimens with a hydrogen concentration of 12 to 100 ppm H to an overtemperature cycle. The DHCV and KIH increased and decreased, respectively, with an increase in the supersaturated hydrogen concentration over the terminal solid solubility for dissolution (TSSD) or ΔC. They then leveled off to constant values at ΔC in excess of the ΔCmax corresponding to a difference of the terminal solid solubility of the hydrogen on cool-down and on heat-up. Further, intentional introduction of an undercooling by 0 to 40°C at the test temperature decreased the DHCV of the Zr-2.5Nb tube, indicating that ΔC between the bulk region and the crack tip governs the DHCV. A new DHC model is proposed where the driving force for DHC is the difference in the hydrogen concentration between the bulk region and the crack tip by preferentially nucleating the hydrides only at the crack tip under an applied tensile stress, due to a hysteresis in the TSS of hydrogen on heat-up and on cool-down. A supplementary experiment was conducted to validate the feasibility of the proposed DHC model.

This is a preview of subscription content, access via your institution.


  1. 1.

    C. E. Coleman and J. F. R. Ambler,Zirconium in the nuclear industry, ASTM STP 633 (eds., A. L. Lowe Jr. and G. W. Parry), p. 589, ASTM (1977).

  2. 2.

    W. J. Pardee and N. E. Paton,Met. trans. A 11, 1391 (1980).

    Article  Google Scholar 

  3. 3.

    R. Dutton, K. Nuttal and M. P. Puls,Met. trans. A 8, 1533 (1977).

    Article  Google Scholar 

  4. 4.

    R. P. Gangloff and R. P. Wei,Met. trans. A 8, 1043 (1977).

    Article  Google Scholar 

  5. 5.

    R. W. Staehle,Proceedings of the 2 nd seminar on nuclear materials and related technology, p. 6–1, KAERI, Daejeon, Korea (1996).

    Google Scholar 

  6. 6.

    R. M. Magdowski and M. O. Speidel,Met. trans. A 19, 1583 (1988).

    Article  Google Scholar 

  7. 7.

    M. P. Puls, L. A. Simpson, and R. Dutton,Fracture problems and solutions in the energy industry (ed., L.A. Simpson), p. 13, Pergamon press, Oxford (1982).

    Google Scholar 

  8. 8.

    S. R. MacEwen, C. E. Coleman, C. E. Ells, and J. Faber,Acta metal. 33, 753 (1985).

    Article  CAS  Google Scholar 

  9. 9.

    S. Q. Shi and M. P. Puls,J. nucl. mater. 218, 30 (1994).

    Article  ADS  Google Scholar 

  10. 10.

    S. Q. Shi, G. K. Shek, and M. P. Puls,J. nucl. mater. 218, 189 (1995).

    Article  ADS  CAS  Google Scholar 

  11. 11.

    Z. L. Pan, I. G. Ritchie, and M. P. Puls,J. nucl. mater. 228, 227 (1996).

    Article  ADS  CAS  Google Scholar 

  12. 12.

    G. F. Slattery,J. inst. met. 95, 43 (1967).

    CAS  Google Scholar 

  13. 13.

    J. J. Keams,J. nucl. mater. 22, 292 (1976).

    ADS  Google Scholar 

  14. 14.

    J. F. R. Ambler,ASTM STP 824, 653 (1984).

    CAS  Google Scholar 

  15. 15.

    F. H. Huang and W. J. Mills,Met. trans. A 22, 2049 (1991).

    Article  Google Scholar 

  16. 16.

    M. P. Puls,Acta metal. 32, 1259 (1984).

    Article  CAS  Google Scholar 

  17. 17.

    M. P. Puls,Hydrogen-induced delayed hydride cracking: 1. strain energy effects on hydrogen solubility, Atomic Energy of Canada Limited Report, AECL-6302 (1978).

  18. 18.

    Y. S. Kim, Characterization test procedures for Zr-2.5Nb tubes; Korea Atomic Energy Research Report, KAERI/TR-1329/99 (1999).

  19. 19.

    Y. B. Yun, Y. S. Kim, K. S. Im, Y. M. Cheong, and S. S. Kim,J. kor. nucl. soc. 35, 529 (2003).

    Google Scholar 

  20. 20.

    S. Sagat, C. E. Coleman, M. Griffiths, and B. J. S. Wilkins,ASTM STP 1245, 35 (1994).

    Google Scholar 

  21. 21.

    Y. S. Kim, S. S. Seon, and S. I. Kwun,J. Kor. Inst. Met. & Mater. 38, 35 (2000).

    CAS  Google Scholar 

  22. 22.

    S. Q. Shi and M. P. Puls,J. nucl. mater. 218, 30 (1994).

    Article  ADS  Google Scholar 

  23. 23.

    C. E. Coleman and J. F. R. Ambler,Scripta metal. 17, 77 (1983).

    Article  CAS  Google Scholar 

  24. 24.

    K. Nuttal and A. J. Rogowski,J. nucl. mater. 80, 279 (1979).

    Article  ADS  Google Scholar 

  25. 25.

    J. F. R. Amber and C. E. Coleman,Hydrogen in metals, p. 3C10, Pergamon press, Oxford (1978).

    Google Scholar 

  26. 26.

    C. E. Coleman and J. F. R. Ambler,Review of coatings and corrosion 3, 105 (1979).

    CAS  Google Scholar 

  27. 27.

    G. K. Shek and D. B. Graham,ASTM STP 1023, 189 (1989).

    Google Scholar 

  28. 28.

    W. M. Small, J. H. Root, and D. Khatamian,J. nucl. mater. 256, 102 (1998).

    Article  ADS  CAS  Google Scholar 

  29. 29.

    C. D. Cann and A. Atrens,J. nucl. mater. 88, 42 (1980).

    Article  ADS  CAS  Google Scholar 

  30. 30.

    Y. S. Kim, Y. Perlovich, M. Isaenkova, S. S. Kim, and Y. M. Cheong,J. nucl. mater. 297, 292 (2001).

    Article  ADS  CAS  Google Scholar 

  31. 31.

    S. Mishra and M. M. Asundi,ASTM STP 551, 63 (1974).

    Google Scholar 

  32. 32.

    J. S. Bradbrook, G. W. Lorimer, and N. Ridley,J. nucl. mater. 42, 142 (1972).

    Article  ADS  CAS  Google Scholar 

  33. 33.

    J. H. Root, W. M. Small, D. Khatamian, and O. Woo,Acta mater. 51, 2041 (2003).

    Article  CAS  Google Scholar 

  34. 34.

    K. F. Amouzouvi and L. J. Clegg,Met. trans. A 18, 1687 (1987).

    Article  Google Scholar 

  35. 35.

    Y. S. Kim, S. J. Kim, and K. S. Im,J. nucl. mater. 367, 335 (2004).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Young Suk Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, Y.S. Driving force for delayed Hydride cracking of zirconium alloys. Met. Mater. Int. 11, 29–38 (2005). https://doi.org/10.1007/BF03027481

Download citation


  • Delayed hydride cracking velocity
  • KIH
  • zirconium
  • Zr−2.5Nb
  • terminal solid solubility
  • hydrogen concentration