Estimation of critical cooling rates for glass formation in bulk metallic glasses through non-isothermal thermal analysis

Abstract

Critical cooling rate (R c ) for glass formation has been calculated from an integrated transformation curve, constructed by combining continuous cooling transformation (CCT) and continuous heating transformation (CHT) curves. The CCT and CHT curves were calculated from experimental measurements on cooling rate dependence of solidification onset temperature using classical nucleation kinetics and heating rate dependence of crystallization onset temperature using Kissinger method, respectively. The critical cooling rate was calculated from the intersection point of the two curves, corresponding to an apparent nose point in the integrated transformation curve. The calculated critical cooling rates were in good agreement with those measured for five different bulk glass forming alloys of Ca−Mg−Zn, Pd−Ni−Cu−P, Zr−Ti−Cu−Ni−Be and Mg−Cu−Y alloys.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Z. P. Lu and C. T. Liu,Acta mater. 50, 3501 (2002).

    Article  CAS  Google Scholar 

  2. 2.

    A. Inoue,Acta mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  3. 3.

    Z. P. Lu and C. T. Liu,Phy. Rev. Lett. 91, 115 (2003).

    Google Scholar 

  4. 4.

    W. B. Kim, B. J. Ye, and S. Yi,Met. Mater.-Int. 10, 1 (2004).

    Article  ADS  Google Scholar 

  5. 5.

    E. S. Park and D. H. Kim,J. Mater. Res. 19, 685 (2004).

    Article  ADS  CAS  Google Scholar 

  6. 6.

    J. Y. Lee, D. H. Bae, J. K. Lee, and D. H. Kim,J. Mater. Res. 19, 2221 (2004).

    Article  ADS  CAS  Google Scholar 

  7. 7.

    T. A. Waniuk, J. Schoers, and W. L. Johnson,Appl. Phy. Lett. 78, 1213 (2001).

    Article  ADS  CAS  Google Scholar 

  8. 8.

    D. R. Uhlmann,J. Non-Cryst. Solids 7, 337 (1972).

    Article  ADS  CAS  Google Scholar 

  9. 9.

    J. M. Barandiaran and J. Colmenero,J. Non-Cryst. Solids 46, 277 (1981).

    Article  ADS  CAS  Google Scholar 

  10. 10.

    A. Inoue, T. Zang, and T. Masumoto,J. Non-Cryst. Solids 156–158, 473 (1993).

    Article  Google Scholar 

  11. 11.

    D. M. Herlach,Mater. Sci. & Eng. R 12, 177 (1994).

    Article  Google Scholar 

  12. 12.

    J. F. Löffler, J. Schroers, and W. L. Johnson,Appl. Phy. Lett. 77, 681 (2000).

    Article  ADS  Google Scholar 

  13. 13.

    F. Gillessen,Ph. D. Thesis, Ruhr-University Bochum, Germany (1989).

  14. 14.

    N. Nishiyama and A. Inoue,Acta mater. 47, 1487 (1999).

    Article  CAS  Google Scholar 

  15. 15.

    X. H. Lin and W. L. Johnson,J. Appl. Phys. 78, 6514 (1995).

    Article  ADS  CAS  Google Scholar 

  16. 16.

    J.-H. Kim, S. G. Kim, and A. Inoue,Acta mater. 49, 615 (2001).

    Article  CAS  Google Scholar 

  17. 17.

    P. I. K. Onorato and D. R. Uhlmann,J. Non-Cryst. Solids 22, 367 (1976).

    Article  ADS  CAS  Google Scholar 

  18. 18.

    D. V. Louzguine and A. Inoue,Appl. Phy. Lett. 81, 2561 (2002).

    Article  ADS  CAS  Google Scholar 

  19. 19.

    H. A. Davies,Phys. Chem. Glasses 17, 159 (1976).

    CAS  Google Scholar 

  20. 20.

    N. Nishiyama and A. Inoue,Mater. Trans, JIM 38, 464 (1997).

    CAS  Google Scholar 

  21. 21.

    A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto,Mater. Trans. JIM 32, 609 (1991).

    CAS  Google Scholar 

  22. 22.

    A. Busch, W. Liu, and W. L. Johnson,J. Appl. Phys. 83, 4134 (1998).

    Article  ADS  CAS  Google Scholar 

  23. 23.

    A. Inoue, T. Nakamula, N. Nishiyama, and T. Masumoto,Mater. Trans., JIM 33, 937 (1992).

    CAS  Google Scholar 

  24. 24.

    R. I. Wu and J. H. Perepezko,Metall. Mater. Trans. A 31, 497 (2000).

    MATH  Article  Google Scholar 

  25. 25.

    D. Turnbull,J. Appl. Phys. 21, 1022 (1950).

    Article  ADS  CAS  Google Scholar 

  26. 26.

    C. V. Thompson and F. Spaepen,Acta mater. 27, 1855 (1979).

    Article  CAS  Google Scholar 

  27. 27.

    K. Mondal, U. K. Chatterjee, and B. S. Murty,Appl. Phy. Lett. 83, 671 (2003).

    Article  ADS  CAS  Google Scholar 

  28. 28.

    H. E. Kissinger,J. Res. Natl. Bur. Stand. Sect. A 57, 217 (1956).

    CAS  Google Scholar 

  29. 29.

    L. C. Chen and F. Spaepen,J. Appl. Phys. 69, 679 (1991).

    Article  ADS  CAS  Google Scholar 

  30. 30.

    D. V. Louzguine and A. Inoue,Scripta mater. 47, 887 (2002).

    Article  CAS  Google Scholar 

  31. 31.

    P. Villars, A. Prince, and H. Okamoto, Handbook of ternary alloy phase diagrams6, 7522 (1995).

    Google Scholar 

  32. 32.

    E. S. Park and D. H. Kim, Submitted toJ. Non-Cryst. Solid.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ji-Hun Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, JH., Park, J.S., Park, E.S. et al. Estimation of critical cooling rates for glass formation in bulk metallic glasses through non-isothermal thermal analysis. Met. Mater. Int. 11, 1–9 (2005). https://doi.org/10.1007/BF03027478

Download citation

Keywords

  • critical cooling rate
  • glass forming ability
  • bulk metallic glass