Effect of Cr, Nb, Mn, V, W and Si on high temperature oxidation of TiAl alloys

Abstract

Alloys of Ti−(47,51)Al, Ti47Al−4Cr, Ti48Al−2Cr2Nb, Ti47Al−1Mn, Ti39.4Al−10V, Ti48.4Al−1.9W, and Ti43Al−2W0.1Si were oxidized at temperatures between 800 and 1000 °C in air to determine the effect of each alloying element on oxidation behavior. Among the alloys tested, the Ti48.4Al-1.9W alloy displayed the best oxidation resistance, due to the beneficial effects of W, whereas the Ti39.4Al-10V alloy displayed the worst oxidation resistance, due to the formation of volatile V-oxides. Cr was harmful while Nb was beneficial. The oxidation rate of each alloy was not strictly proportional to temperature, because each alloying element had different temperature sensitivity with respect to oxidation rate.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. W. Kim,J. Met. 41, July, 24 (1989).

    CAS  Google Scholar 

  2. 2.

    Y. W. Kim,J. Met. 46, July, 30 (1994).

    CAS  Google Scholar 

  3. 3.

    F. H. Froes and C. Suryanarayana,Physical Metallurgy and Processing of Intermetallic Compounds, p. 297, Chapman & Hall, Inc., NY (1996).

    Google Scholar 

  4. 4.

    M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci,J. Met. 48, Nov., 46 (1996).

    CAS  Google Scholar 

  5. 5.

    I. C. I. Okafor and R. G. Reddy,J. Met. 51, June, 35 (1999).

    CAS  Google Scholar 

  6. 6.

    H. G. Jung, C. H. Oh, and K. Y. Kim,J. Kor. Inst. Met. & Mater. 38, 1053 (2000).

    CAS  Google Scholar 

  7. 7.

    J. H. Won, Y. J. Kim, S. W. An, and D. B. Lee,J. Kor. Inst. Met. & Mater. 36, 546 (1996).

    Google Scholar 

  8. 8.

    K. Kasahara, K. Hashimoto, H. Doi, and T. Tsujimoto,J. Jpn. Inst. Met. 54, 948 (1990).

    CAS  Google Scholar 

  9. 9.

    Y. Shida and H. Anada,Oxid. Met. 45, 197 (1996).

    Article  CAS  Google Scholar 

  10. 10.

    K. Shibue, M. Kumagai, and M. S. Kim,J. Jpn Inst. Met. 56, 1457 (1992).

    CAS  Google Scholar 

  11. 11.

    V. A. C. Haanappel, J. D. Sunderkotter, and M. F. Stroosnijder,Intermetallics 7, 529 (1999).

    Article  CAS  Google Scholar 

  12. 12.

    S. Becker, A. Rahmel, M. Schorr, and M. Schütze,Oxid. Met. 38, 425 (1992).

    Article  CAS  Google Scholar 

  13. 13.

    D. B. Lee, Y. D. Jang, and M. Nakamura,Mater. Trans. 43, 2531 (2002).

    Article  CAS  Google Scholar 

  14. 14.

    U. Herold-Schmidt, B. Opolka, and S. Schwantes,Prakt. Metallogrt. 30, 7 (1993)

    Google Scholar 

  15. 15.

    S. A. Kekare and P. B. Aswath,J. Mater. Sci. 32, 2485 (1997).

    Article  CAS  Google Scholar 

  16. 16.

    Y. Shida and H. Anada,Corros. Sci. 35, 945 (1993).

    Article  CAS  Google Scholar 

  17. 17.

    H. Anada and Y. Shida,J. Jpn Inst. Met. 58, 1036 (1994).

    CAS  Google Scholar 

  18. 18.

    Y. Shida and H. Anada,Mater. Trans. JIM 35, 623 (1994).

    CAS  Google Scholar 

  19. 19.

    A. Tomasi, C. Noseda, M. Nazmy, and S. Gialanella,MRS Symp. Proc. 460, 225 (1997).

    CAS  Google Scholar 

  20. 20.

    W. S. Shim and D. B. Lee,Met. Mater.-Int. 9, 473 (2003).

    Article  CAS  Google Scholar 

  21. 21.

    A. Tomasi, S. Gialanella, P. G. Orsini, and M. Nazmy,MRS Sump. Proc. 364, 999 (1995).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong-Bok Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, DB. Effect of Cr, Nb, Mn, V, W and Si on high temperature oxidation of TiAl alloys. Met. Mater. Int. 11, 141 (2005). https://doi.org/10.1007/BF03027458

Download citation

Keywords

  • TiAl
  • intermetallics
  • high temperature oxidation
  • chromium
  • niobium
  • manganese
  • vanadium
  • tungsten
  • silicon