Mechanical properties of friction stir welded Al alloys with different hardening mechanisms

Abstract

The mechanical properties of precipitation hardened Al 6061-T651 and Al 7075-T6 and strain hardened Al 5083-H32, friction stir welded with various welding parameters, were examined in the present study. 4 mm thick Al 6061-T651, Al 7075-T6, and Al 5083-H32 alloy plates were used for friction stir welding (FSW) with rotating speed varied from 1000 to 2500 rpm (rotation per minute) and welding speed ranging from 0.1 to 0.4 mpm (m/min). Each alloy displayed slightly different trends with respect to the effect of different welding parameters on the tensile properties of the FSWed Al alloys. The tensile elongation of FSWed Al 6061-T651 and Al 7075-T6 tended to increase greatly, while the tensile strength decreased marginally, with increasing welding speed and/or decreasing rotating speed. The tensile strength and the tensile elongation of Al 6061-T651 decreased from 135 to 154 MPa and 10.6 to 17.0%, respectively, with increasing welding speed from 0.1 to 0.4 mpm at a rotating speed of 1,600 rpm. Unlike the age-hardened Al 6061-T651 and Al 7075-T6, the strain-hardened Al 5083-H32 showed no notable change in tensile property with varying welding parameters. The change in the strength level with different welding parameters for each alloy was not as significant as the variation in tensile elongation. It was believed that the tensile elongation of FSWed Al alloys with varying welding parameters was mainly determined by the coarse particle clustering. With respect to the change in tensile strength during friction stir welding, it is hypothesized that two competing mechanisms, recovery by friction and heat and strain hardening by plastic flow in the weld zone offset the effects of different welding parameters on the tensile strength level of FSWed Al alloys.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Liu, L. E. Murr, C. Niou, J. C. McClure, and F. R. Vega,Scripta mater. 37, 355 (1997).

    Article  CAS  Google Scholar 

  2. 2.

    W. M. Thomas and E. D. Nicholas,Mater. Design 18, 269 (1997).

    Article  CAS  Google Scholar 

  3. 3.

    D. Lohwasser,Proceeding of the Second International Symposium on Friction Stir welding, Gothenburg, Sweden (2000).

  4. 4.

    O. T. Midling, J. S. Kvale, and O. Dahl,Proceeding of the First International Symposium on Friction Stir Welding, Thousand Oaks, USA (1999).

  5. 5.

    B. N. Padgett, C. Paglia, and R. G. Buchheit,Proceeding of the Friction Stir Welding and Processing II (eds., K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin and T. Lienert), P. 55, TMS, USA (2003).

    Google Scholar 

  6. 6.

    P. S. Pao, S. J. Gill, C. R. Feng, and K. K. Sankaran,Scripta mater. 45, 605 (2001).

    Article  CAS  Google Scholar 

  7. 7.

    J. A. Esparza, W. C. Davis, E. A. Trillo, and L. E. Mun,J. Mater. Sci. Lett. 21, 917 (2002).

    Article  CAS  Google Scholar 

  8. 8.

    Y. Li, E. A. Trillo, and L. E. Murr,J. Mater. Sci. Lett. 19, 1047 (2000).

    Article  CAS  Google Scholar 

  9. 9.

    J. Q. Su, T. W. Nelson, R. Mishra, and M. Mahoney,Acta mater. 51, 713 (2003).

    Article  CAS  Google Scholar 

  10. 10.

    T. U. Seidel and A. P. Reynolds,Met. Mater. Trans. A 32, 2879 (2001).

    Article  Google Scholar 

  11. 11.

    L. E. Murr, G. Liu, and J. C. McClure,J. Mater. Sci. 33, 1243 (1998).

    Article  ADS  CAS  Google Scholar 

  12. 12.

    B. Heinz and B. Skrotzki,Met. Mater. Trans. B 33, 489 (2002).

    Article  Google Scholar 

  13. 13.

    H. G. Salem, A. P. Reynolds, and J. S. Lyons,Scripta mater. 46, 337 (2002).

    Article  CAS  Google Scholar 

  14. 14.

    M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, and W. H. Bingel,Met. Mater. Trans. A 29, 1955 (1998).

    Article  Google Scholar 

  15. 15.

    O. V. Flores, C. Kennedy, L. E. Murr, D. Brown, S. Pappu, B. M. Nowak, and J. C. McClure,Scripta mater. 38, 703 (1998).

    Article  CAS  Google Scholar 

  16. 16.

    O. Frigaard, O. Grong, and O. T. Midling,Met. Mater. Trans. A 32, 1189 (2001).

    Article  Google Scholar 

  17. 17.

    Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, and T. Hashimoto,Met. Mater. Trans A 30, 3125 (1999).

    Article  Google Scholar 

  18. 18.

    A. Inoue, H. Kimura, and S. I. Yamaura,Met. Mater.-Int. 9, 527 (2003).

    Article  CAS  Google Scholar 

  19. 19.

    S. G. Lim, S. S. Kim, C. G. Lee, and S. J. Kim,Met. Mater. Trans. A 35, 2829 (2004).

    Article  Google Scholar 

  20. 20.

    P. R. Subramanian, N. V. Nirmalan, L. M. Young, P. Sudkamp, M. Larsen, P. L. Dupress, and A. K. Shukla,Proceeding of the Friction Stir Welding and Processing II (eds., K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin, and T. Lienert), p. 235, TMS, USA (2003).

    Google Scholar 

  21. 21.

    T. H. North, G. J. Bendzsak, and C. Smith,Proceeding of the Second International Symposium on Friction Stir Welding, Gothenburg, Sweden (2000).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lim, S., Kim, S., Lee, CG. et al. Mechanical properties of friction stir welded Al alloys with different hardening mechanisms. Met. Mater. Int. 11, 113 (2005). https://doi.org/10.1007/BF03027454

Download citation

Keywords

  • friction stir welding
  • Al 6061-T651
  • Al 70750-T6
  • Al 5083-H32
  • mechanical property