Measurements of anisotropic yielding, bauschinger and transient behavior of automotive dual-phase steel sheets

  • Daeyong Kim
  • Myoung-Gyu Lee
  • Chongmin Kim
  • Michael L. Wenner
  • Robert H. Wagoner
  • Frederic Barlat
  • Kwansoo Chung
  • Jae Ryoun Youn
  • Tae Jin Kang
Article

Abstract

In order to present better prediction capability in computational analysis, mechanical properties of the dualphase high strength steel have been characterized especially for anisotropy as well as the Bauschinger and transient behavior. As for the anisotropy, the non-quadratic anisotropic yield function Yld2000-2d has been utilized and its material parameters have been obtained using the uni-axial tension tests as well as the hydraulic bulge test. To measure the hardening behavior including the Bauschinger and transient behavior, a newly developed test method has been applied for the uni-axial tension/compression and compression/tension tests, in which solid blocks along the both sides of the sheet specimen prevent buckling. From the tension/compression curves, the equations to describe isotropic and kinematic hardening behavior have been obtained. The modified Chaboche model has been confirmed to well represent the hardening behavior including the Bauschinger and transient behavior.

Keywords

dual-phase steel anisotropy Bauschinger effect transient behavior 

References

  1. X. M. Chen, J. J. Drouin, D. R. Coopmans, R. D. Dell'Osso, and P. J. Belanger,SAE Technical Paper 2001-01-3074 (2001).Google Scholar
  2. M. F. Shi, G. H. Thomas, M. X. Chen, and J. R. Fekete,ISS 43rd Mechanical Working and Steel Processing Conferences, p. 27, Charlotte, N.C., U.S.A. (2001).Google Scholar
  3. J. R. Fekete, A. M. Stibich, and M. F. Shi,SAE Technical Paper 2001-01-3101 (2001).Google Scholar
  4. A. A. Konieczny, M. F. Shi, and C. Du,SAE Technical Paper 2001-01-3106 (2001).Google Scholar
  5. 5.T. Uemori, T. Okada, and F. Yoshida,Metals and Materials 4, 311 (1998).Google Scholar
  6. 6.F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, S. H. Choi, F. Pourboghrat, E. Chu, and D. J. Lege,Int. J. Plasticity 19, 1287 (2003).Google Scholar
  7. 7.J. L. Chaboche,Int. J. Plasticity 2, 149 (1986).MATHCrossRefGoogle Scholar
  8. K. Chung, M. G. Lee, D. Kim, C. Kim, M. L. Wenner, and F. Barlat,Int. J. Plasticity (submitted).Google Scholar
  9. K. Chung, Y. Hayashida, D. J. Lege, J. C. Brem, K. Matsui, F. Barlat, Y. Maeda, R. Becker, M. Yanagawa, S. J. Murtha, and S. Hattori,Int. J. Plasticity (submitted).Google Scholar
  10. 10.L. Geng, Y. Shen and R. H. Wagoner,Int. J. Plasticity 18, 743 (2002).MATHCrossRefGoogle Scholar
  11. 11.L. Geng and R. H. Wagoner,Int. J. Mech. Sci. 44, 123 (2002).MATHCrossRefGoogle Scholar
  12. V. Balakrishnan,M.S. Thesis, The Ohio State University (1999).Google Scholar
  13. 13.K. Chung and R. H. Wagoner,Metall. Trans. A 17, 1001 (1986).CrossRefGoogle Scholar
  14. 14.D. C. Drucker and L. Palgen,J. Appl. Mech. 48, 479 (1981).MATHCrossRefGoogle Scholar
  15. M. G. Lee, D. Kim, K. Chung, J. R. Youn, and T. J. Kang,Polym. Polym. Compos. (accepted).Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Daeyong Kim
    • 1
  • Myoung-Gyu Lee
    • 1
  • Chongmin Kim
    • 2
  • Michael L. Wenner
    • 3
  • Robert H. Wagoner
    • 4
  • Frederic Barlat
    • 5
  • Kwansoo Chung
    • 1
    • 6
  • Jae Ryoun Youn
    • 1
  • Tae Jin Kang
    • 1
  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Materials & Processes LaboratoryR & D Center & NAO Planning, General MotorsWarrenU.S.A.
  3. 3.Manufacturing Systems Research LaboratoryR & D Center & NAO Planning, General MotorsColumbusU.S.A.
  4. 4.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusU.S.A.
  5. 5.Material Science DivisionAlcoa Technical CenterAlcoa CenterU.S.A.
  6. 6.Research Institute of Advanced MaterialsSeoul National UniversitySeoulKorea

Personalised recommendations