Skip to main content
Log in

Nonlocal approach in evaluating strain localization behaviors of voided ductile materials

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Finite element analysis of the strain localization behaviors of a voided ductile material has been performed using a non-local plasticity, in which the yield strength depends on both an equivalent plastic strain measure (hardening parameter) and Laplacian equivalent. The introduction of gradient terms to the yield function was found to play an important role in simulating the strain localization behavior of the voided ductile material. The effect of the mesh size and characteristic length on the strain localization were also investigated. An FEM simulation based on the proposed non-local plasticity revealed that the load-strain curves of the voided ductile material subjected to plane strain tension converges to one curve, regardless of the mesh size. In addition, the results using non-local plasticity also showed that the dependence of the deformation behavior of the material on the mesh size was much less sensitive than with classical local plasticity and could be successfully eliminated through the introduction of a large value for the characteristic length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Needlemann,Comp. Meth. Appl. Mech. Eng. 76, 69 (1988).

    Article  Google Scholar 

  2. Y. Tomita,JSME Int. J. 38, 145 (1995).

    Google Scholar 

  3. G. Pijaudier-Cabot and Z. P. Bazant,J. Eng. Mech. ASCE 113, 1512 (1987).

    Article  Google Scholar 

  4. J. B. Leblond, G. Perrin, and J. Devaux,J. Appl. Mech. ASME,61, 236 (1994).

    Article  MATH  Google Scholar 

  5. V. Tveraggrd and A. Needleman,Int. J. Solids Struct. 32, 1063 (1995).

    Article  Google Scholar 

  6. R. D. Mindlin,Exp. Mech. 3, 1 (1963).

    Article  Google Scholar 

  7. E. C. Aifantis,J. Eng. Mater: Tech. ASME 106, 326 (1984).

    Article  CAS  Google Scholar 

  8. H. Zbib and E. C. Aifantis,Res. Mech. 23, 261; 279; 293 (1988).

    Google Scholar 

  9. H. B. Muhlhaus and E. C. Aifantis,Int. J. Solids Struct. 28, 845 (1991).

    Article  MathSciNet  Google Scholar 

  10. R. de Borst and H. B. Muhlhaus,Int. J. Num. Methods Eng. 35, 521 (1992).

    Article  MATH  Google Scholar 

  11. J. W. Hutchinson,Int. J. Solids Struct. 37, 225 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  12. Z. P. Bazant and T. P. Chang,J. Eng. Mech. ASCE 110, 1441 (1984).

    Article  Google Scholar 

  13. A. L. Gurson,J. Eng. Mater. Tech. ASME 99, 2 (1977).

    Google Scholar 

  14. A. Needleman and V. Tvergaard,J. Eng. Mater: Tech. ASME 100, 164 (1978).

    Google Scholar 

  15. J. W. Hutchinson and V. Tvergaard,Int. J. Solids Struct. 17, 451 (1981).

    Article  MATH  Google Scholar 

  16. Y. S. Kim,Theory of Engineering Plasticity, Sigma Press, Seoul, Korea (2003).

    Google Scholar 

  17. L. P. Mikkelsen,Eur. J. Mech. A/Solids 18, 805 (1999).

    Article  MATH  ADS  Google Scholar 

  18. Y. Tomita and Y. S. Kim,Development of FEM Code for Elastic-Plastic Large Strain Analysis (EPLAN), Kobe University, Kobe, Japan (1984).

    Google Scholar 

  19. R. Hill,The Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK (1950).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-suk Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Ys., Needleman, A. Nonlocal approach in evaluating strain localization behaviors of voided ductile materials. Met. Mater. Int. 9, 405–412 (2003). https://doi.org/10.1007/BF03027196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027196

Keywords

Navigation