Skip to main content
Log in

Effects of diazepam on125I-iomazenil-benzodiazepine receptor binding and epileptic seizures in the El mouse

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate changes in free benzodiazepine receptor density in response to repeated, long-term administration of diazepam in epilepsy, we assessed125I-iomazenil (125I-IMZ) binding in a mouse model.

Methods

El mice were divided into two groups of 12 mice each which received either no diazepam (EI(D[-]) group) or 2 mg/kg of diazepam per week (EI(D[+]) group). Nine ddY mice were used as a control. Once each week from the age of 5 to 19 weeks, the El mice received stimulation to produce epileptic seizures 20 minutes after receiving intraperitoneal injections. At 20 weeks of age, a total dose of 0.37 MBq of125I-IMZ was injected in all mice and their brains were rapidly removed 3 hours later. The incidence of epileptic seizures at the age of 19 weeks and the autoradiograms of the brain were compared.

Results

The incidence of epileptic seizures in response to weekly stimulation was significantly lower in the E1(D[+]) group than in the E1(D[-]) group (p < 0.001). The percent injected doses of125I-IMZ per gram of tissue in the cortex, hippocampus and amygdala were significantly lower in the E1(D[+]) group than in the E1(D[-]) group (p < 0.05).

Conclusion

The results suggest that diazepam binds competitively to125I-IMZ as an agonist to free benzodiazepine receptor sites in the cortex, hippocampus and amygdala and shows anticonvulsant effect in El mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffiths T, Evans MC, Meldrum BS. Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus.Neuroscience 1984; 12: 557–567.

    Article  PubMed  CAS  Google Scholar 

  2. Houser CR, Harris AB, Vaughn JE. Time course of the reduction of G ABA terminals in a model of focal epilepsy: a glutamic acid decarboxylase immunocytochemical study.Brain Res 1986; 24: 129–145.

    Article  Google Scholar 

  3. Pitkänen A, Saano V, Hyvönen K, Airaksine MM, Riekkinen PJ. Decreased GABA, benzodiazepine, and picrotoxinin receptor binding in brains of rats after cobalt-induced epilepsy.Epilepsia 1987; 28: 11–16.

    Article  PubMed  Google Scholar 

  4. Sloviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy.Science 1987; 235: 73–76.

    Article  PubMed  CAS  Google Scholar 

  5. Seyfried TN, Glaser GH. A review of mouse mutants as genetic models of epilepsy.Epilepsia 1985; 26: 143–150.

    Article  PubMed  CAS  Google Scholar 

  6. Marescaux C, Vergnes M, Depaulis A. Genetic absence epilepsy in rats from Strasbourg—a review.J Neural Transm Suppl 1992; 35: 37–69.

    PubMed  CAS  Google Scholar 

  7. Faingold CL. The genetically epilepsy-prone rat.Gen Pharmacol 1988; 19: 331–338.

    PubMed  CAS  Google Scholar 

  8. Serikawa T, Yamada J. Epileptic seizures in rats homozy-gous for two mutations, zitter and tremor.J Hered 1986; 77: 441–444.

    PubMed  CAS  Google Scholar 

  9. Löscher W, Schwark WS. Evidence for impaired GAB Aergic activity in the substantia nigra of amygdaloid kindled rats.Brain Res 1985; 339: 146–150.

    Article  PubMed  Google Scholar 

  10. Löscher W, Schwark WS. Further evidence for abnormal GABAergic circuits in amygdala-kindled rats.Brain Res 1987; 420: 385–390.

    Article  PubMed  Google Scholar 

  11. Ribak CE, Hunt CA, Bakay RAE, Oertel WH. A decrease in the number of GABAergic somata is associated with the preferential loss of GABAergic terminals at epileptic foci.Brain Res 1986; 363: 78–90.

    Article  PubMed  CAS  Google Scholar 

  12. Ross SM, Craig CR. gamma-Aminobutyric acid concentration, L-glutamate 1-decarboxylase activity, and properties of the gamma-aminobutyric and postsynaptic receptor in cobalt epilepsy in the rat.J Neurosci 1981; 1: 1388–1396.

    PubMed  CAS  Google Scholar 

  13. Beer HF, Blauenstein PA, Hasler PH, Delaloye B, Riccabona G, Bangerl I, et al.In vitro andin vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors.J Nucl Med 1990; 31: 1007–1014.

    PubMed  CAS  Google Scholar 

  14. Holl K, Deisenhammer E, Dauth J, Carmann H, Schubiger PA. Imaging benzodiazepine receptors in the human brain by single photon emission computed tomography (SPECT).Nucl Med & Biol 1989; 16: 759–763.

    CAS  Google Scholar 

  15. Hommer DW, Skolnick P, Paul SM. The benzodiazepine/ GABA receptor complex and anxiety In:Psychopharma- cology, 3 rd, Meltzer HY (ed), New York; Raven Press, 1987: 977–983.

    Google Scholar 

  16. Moehler H, Okada T. Benzodiazepine receptor: demonstration in the central nervous system.Science 1977; 198: 849–851.

    Article  CAS  Google Scholar 

  17. Imaizumi K, Nakano T. Mutant stocks, strain; El.Mouse Newsletter 1964; 31: 57.

    Google Scholar 

  18. Suzuki J. Paroxysmal discharges in the electroencephalogram of the El mouse.Experientia 1976; 32: 336–337.

    Article  PubMed  CAS  Google Scholar 

  19. Rise ML, Frankel WN, Coffin JM, Seyfried TN. Genes for epilepsy mapped in the mouse.Science 1991; 253: 669–673.

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki J, Nakamoto Y. Abnormal plastic phenomena of sensory-precipitated epilepsy in the mutant El mouse.Exp Neurol 1982; 75: 440–452.

    Article  PubMed  CAS  Google Scholar 

  21. Sugaya E, Ishige A, Sekiguchi K, Iizuka S, Ito K, Sugimoto A, et al. Pentylenetetrazol-induced convulsion and effect of anticonvulsants in mutant inbred strain El mice.Epilepsia 1986; 27: 354–358.

    Article  PubMed  CAS  Google Scholar 

  22. Kurokawa M, Kato M, Machiyama Y. Choline acetylase activity in a convulsive strain of mouse.Biochim Biophys Acta 1961; 50: 385–386.

    Article  PubMed  CAS  Google Scholar 

  23. Hiramatsu M, Ogawa K, Kabuto H, Mori A. Reduced uptake and release of 5-hydroxytryptamine and taurine in the cerebral cortex of epileptic El mice.Epilepsy Res 1987; 1:40–45.

    Article  PubMed  CAS  Google Scholar 

  24. Murashima YL, Suzuki J, Yoshii M. Developmental program of epileptogenesis in the brain of EL mice.Epilepsia 2005; 46: 10–16.

    Article  PubMed  CAS  Google Scholar 

  25. Suzuki J, Nakamoto Y, Shinkawa Y. Local cerebral glucose utilization in epileptic seizures of the mutant El mouse.Brain Res 1983; 266: 359–363.

    Article  PubMed  CAS  Google Scholar 

  26. Lloyd KG, Bossi L, Morselli PL, Munari C, Rougier M, Loiseau H. Alterations of GABA-mediated synaptic transmission in human epilepsy. In:Advances in Neurology, Vol. 44, Delgado-Escueta AV, Ward JrJJ, Woodbury DM, Porter RJ (eds), New York; Raven, 1986: 1033–1044.

    Google Scholar 

  27. Greenblatt DJ, Shader RI, Divoll M, Harmatz JS. Benzodi-azepines: a summary of pharmacokinetic properties.Br J Clin Pharmacology 1981; 11: 11S-16S.

    CAS  Google Scholar 

  28. Greenblatt DJ, Shader RI, Abernethy DR. Drug therapy. Current status of benzodiazepines.N Eng J Med 1983; 309: 410–416.

    CAS  Google Scholar 

  29. Owen RT, Tyrer P. Benzodiazepine dependence. A review of the evidence.Drugs 1983; 25: 385–398.

    Article  PubMed  CAS  Google Scholar 

  30. Squires RF, Brastrup C. Benzodiazepine receptors in rat brain.Nature 1977; 266: 732–734.

    Article  PubMed  CAS  Google Scholar 

  31. Paxinos G, Watson C.The rat brain in stereotaxic coordinates. Sydney, London, Tokyo; Academic Press, 1982.

    Google Scholar 

  32. Schubiger PA, Hasler PH, Beer-Wohlfahrt H, Bekier A, Oettli R, Cordes M, et al. Evaluation of a multicentre study with Iomazenil—a benzodiazepine receptor ligand.Nucl Med Commun 1991; 12: 569–582.

    Article  PubMed  CAS  Google Scholar 

  33. Tanaka F, Yonekura F, Ikeda A, Terada K, Mikurui N, Nishizawa S, et al. Presurgical identification of epileptic foci with iodine-123 iomazenil SPET: comparison with brain perfusion SPET and FDG PET.Eur J Nucl Med 1997; 24: 27–34.

    Article  PubMed  CAS  Google Scholar 

  34. Georgiev VP, Lazarova MB, Kambourova TS. Interactions between angiotensin II, diazepam, clonazepam and di-n-propylacetate in pentylenetetrazol kindling seizures in mice.Neuropeptides 1991; 18: 187–191.

    Article  PubMed  CAS  Google Scholar 

  35. Vasar E, Soosaar A, Harro J, Lang A. Changes at cholecys- tokinin receptors induced by long-term treatment with diazepam and haloperidol.Eur Neuropsychopharmacol 1992; 2: 447–454.

    Article  PubMed  CAS  Google Scholar 

  36. Rundfeldt C, Wlaz P, Honack D, Loscher W. Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil.J Pharmacol Exp Ther 1995; 275: 693–702.

    PubMed  CAS  Google Scholar 

  37. Wong PT, Teo WL. Diazepam sensitive mice: differential sensitivity to the depressant and anticonvulsant effects of diazepam.Life Sci 1990; 47: 1519–1525.

    Article  PubMed  CAS  Google Scholar 

  38. Serra M, Ghiani CA, Motzo C, Porceddu ML, Biggio G. Antagonism of isoniazid-induced convulsions by abecarnil in mice tolerant to diazepam.Pharmacol Biochem Behav 1995; 52: 249–254.

    Article  PubMed  CAS  Google Scholar 

  39. Gordon R, Gels M, Diamantis W, Sofia RD. Interaction of felbamate and diazepam against maximal electroshock seizures and chemoconvulsants in mice.Pharmacol Biochem Behav 1991;40: 109–113.

    Article  PubMed  CAS  Google Scholar 

  40. De Sarro G, Chimirri A, McKernan R, Quirk K, Giusti P, De Sarro A. Anticonvulsant activity of azirino[l,2-d] [l,4]benzodiazepines and related 1,4-benzodiazepines in mice.Pharmacol Biochem Behav 1997; 58: 281–289.

    Article  PubMed  Google Scholar 

  41. Kokubu M, Ohtomo F, Endo Y, Shinya N. The relationship between the pharmacological effects of benzodiazepines and theirin vivo binding sites in the brain of rats.Higashi Nippon Dental Journal 1989; 8: 107–112.

    PubMed  CAS  Google Scholar 

  42. Mackerer CR, Kochman RL, Bierschenk A, Brenner SS. The binding of3H-diazepam to rat brain.J Pharmacol Exp Ther 1978; 206: 405–413.

    PubMed  CAS  Google Scholar 

  43. Moehler H, Okada T, Heitz P, Ulrich J. Biochemical identification of the sites of action of benzodiazepines in human brain by3H-diazepam binding.Life Sci 1978; 22: 985–996.

    Article  CAS  Google Scholar 

  44. Suzuki J. Genetic and physiological mechanism of epileptic seizures. In:Genetic and physiological mechanism of epileptic seizures, Suzuki J, Scino M, Fukuyama Y, Komai K (eds), Amsterdam; Elsevier, 1989: 3–12.

    Google Scholar 

  45. Ishida N, Kasamo K, Nakamoto Y, Suzuki J. Epileptic seizure of El mouse initiates at the parietal cortex: depth EEG observation in freely moving condition using buffer amplifier.Brain Res 1993; 608: 52–57.

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki J, Nakamoto Y, Shinkawa Y. Local cerebral glucose utilization in epileptic seizures of the mutant El mouse.Brain Res 1983; 266: 359–363.

    Article  PubMed  CAS  Google Scholar 

  47. Zanotti A, Mariot R, Contarino A, Lipartiti M, Giusti P. Lack of anticonvulsant tolerance and benzodiazepine receptor down regulation with imidazenil in rats.Br J Pharmacol 1996; 117: 647–652.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Fukumitsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumitsu, N., Ogi, S., Uchiyama, M. et al. Effects of diazepam on125I-iomazenil-benzodiazepine receptor binding and epileptic seizures in the El mouse. Ann Nucl Med 20, 541–546 (2006). https://doi.org/10.1007/BF03026818

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026818

Key words

Navigation