Skip to main content

Sophus lie and harmony in mathematical physics, on the 150th anniversary of his birth

This is a preview of subscription content, access via your institution.

References

  1. W. F. Ames,Nonlinear Partial Differential Equations in Engineering, Vols. I and II, New York: Academic Press (1965,1972).

    MATH  Google Scholar 

  2. R. L. Anderson and N. H. Ibragimov,Lie-Bäcklund Transformations in Applications, Philadelphia: SIAM (1979).

    Book  MATH  Google Scholar 

  3. Yu. Berest, Construction of fundamental solutions for Huygens equations as invariant solutions,Dokl. Akad. Nauk SSSR, 317(4), 786–789 (1991).

    MathSciNet  Google Scholar 

  4. L. Bianchi,Lezioni sulla teoria dei gruppi continui finiti di trasformazioni, Pisa: Spoerri (1918).

    MATH  Google Scholar 

  5. G. Birkhoff,Hydrodynamics, Princeton, NJ: Princeton University Press (1950, 1960).

    MATH  Google Scholar 

  6. G. W. Bluman and S. Kumei,Symmetries and Differential Equations, New York: Springer-Verlag (1989).

    Book  MATH  Google Scholar 

  7. T. Hawkins, Jacobi and the birth of Lie’s theory of groups,Arch. History Exact Sciences 42(3), 187–278 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Hille,functional Analysis and Semigroups, New York: Amer. Math. Soc. (1948), preface.

    Google Scholar 

  9. N. H. Ibragimov,Transformation Groups Applied to Mathematical Physics, Dordrecht: D. Reidel (1985).

  10. N. H. Ibragimov,Primer on the Group Analysis, Moscow: Znanie (1989).

    Google Scholar 

  11. N. H. Ibragimov,Essays in the Group Analysis of Ordinary Differential Equations, Moscow: Znanie (1991).

    Google Scholar 

  12. N. H. Ibragimov, Group analysis of ordinary differential equations and new observations in mathematical physics,Uspekhi Mat. Nauk, To appear.

  13. F. Klein, Theorie der Transformationsgruppen B. III,Per-voe prisuzhdenie premii N. I. Lobachevskogo, 22 okt. 1897 goda, Kazan: Tipo-litografiya Imperatorskago Universiteta (1898), pp. 10–28.

    Google Scholar 

  14. P. S. Laplace,Mécanique céleste, T. I. livre 2, Chap. III (1799).

  15. S. Lie, Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichun-gen,Arch. for Math. VI (1881).

  16. S. Lie, Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischenx, y, die eine Gruppe von Transformationen gestatten,Arch. Math. VIII, 187–453(1883).

    Google Scholar 

  17. S. Lie,Theorie der Transformationsgruppen, Bd. 1 (Bearbeitet unter Mitwirkung von F. Engel), Leipzig: B. G. Teubner(1888).

    Google Scholar 

  18. S. Lie, Die infinitesimalen Berührungstransformationen der Mechanik,Leipz. Ber. (1889).

  19. S. Lie,Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Bearbeitet und heraus-gegeben von Dr. G. Scheffers), Leipzig: B. G. Teubner (1891).

    Google Scholar 

  20. S. Lie, Zur allgemeinen Théorie der partiellen Differentialgleichungen beliebiger Ordnung,Leipz. Ber. I, 53–128(1895).

    Google Scholar 

  21. S. Lie,Gesammelte Abhandlungen, Bd. 1–6, Leipzig-Oslo.

  22. M. Noether, Sophus Lie,Math. Annale 53, 1–11 (1900).

    Article  MATH  Google Scholar 

  23. P. J. Olver,Applications of Lie Groups to Differential Equations, New York: Springer-Verlag (1986).

    Book  MATH  Google Scholar 

  24. L. V. Ovsiannikov, Group properties of differential equations, Novosibirsk: USSR Academy of Science, Siberian Branch (1962).

    Google Scholar 

  25. L. V. Ovsiannikov,Group Analysis of Differential Equations, Boston: Academic Press (1982).

    MATH  Google Scholar 

  26. A. Z. Petrov,Einstein Spaces, Oxford: Pergamon Press (1969).

    MATH  Google Scholar 

  27. E. M Polischuk,Sophus Lie, Leningrad: Nauka (1983).

    Google Scholar 

  28. V. V. Pukhnachev, Invariant solutions of Navier-Stokes equations describing free-boundary motions,Dokl. Akad. Nauk SSSR 202(2), 302–305 (1972).

    Google Scholar 

  29. W. Purkert, Zum Verhältnis von Sophus Lie und Friedrich Engel,Wiss. Zeitschr. Ernst-Moritz-Arndt-Universität Greifs-wald, Math.-Naturwiss. Reihe XXXIII, Heft 1–2, 29-34, (1984).

    Google Scholar 

  30. G. F. B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,Abh. K. Ges. Wiss. Göttingen8 (1860).

  31. L.I. Sedov,Similarity and Dimensional Methods in Mechanics, 4th ed., New York: Academic Press (1959).

    Google Scholar 

  32. H. Stephani,Differential Equations: Their Solution Using Symmetries, Cambridge: Cambridge University Press(1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ibragimov, N.H. Sophus lie and harmony in mathematical physics, on the 150th anniversary of his birth. The Mathematical Intelligencer 16, 20–28 (1994). https://doi.org/10.1007/BF03026611

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026611

Keywords