This is a preview of subscription content, access via your institution.
References
W. F. Ames,Nonlinear Partial Differential Equations in Engineering, Vols. I and II, New York: Academic Press (1965,1972).
R. L. Anderson and N. H. Ibragimov,Lie-Bäcklund Transformations in Applications, Philadelphia: SIAM (1979).
Yu. Berest, Construction of fundamental solutions for Huygens equations as invariant solutions,Dokl. Akad. Nauk SSSR, 317(4), 786–789 (1991).
L. Bianchi,Lezioni sulla teoria dei gruppi continui finiti di trasformazioni, Pisa: Spoerri (1918).
G. Birkhoff,Hydrodynamics, Princeton, NJ: Princeton University Press (1950, 1960).
G. W. Bluman and S. Kumei,Symmetries and Differential Equations, New York: Springer-Verlag (1989).
T. Hawkins, Jacobi and the birth of Lie’s theory of groups,Arch. History Exact Sciences 42(3), 187–278 (1991).
E. Hille,functional Analysis and Semigroups, New York: Amer. Math. Soc. (1948), preface.
N. H. Ibragimov,Transformation Groups Applied to Mathematical Physics, Dordrecht: D. Reidel (1985).
N. H. Ibragimov,Primer on the Group Analysis, Moscow: Znanie (1989).
N. H. Ibragimov,Essays in the Group Analysis of Ordinary Differential Equations, Moscow: Znanie (1991).
N. H. Ibragimov, Group analysis of ordinary differential equations and new observations in mathematical physics,Uspekhi Mat. Nauk, To appear.
F. Klein, Theorie der Transformationsgruppen B. III,Per-voe prisuzhdenie premii N. I. Lobachevskogo, 22 okt. 1897 goda, Kazan: Tipo-litografiya Imperatorskago Universiteta (1898), pp. 10–28.
P. S. Laplace,Mécanique céleste, T. I. livre 2, Chap. III (1799).
S. Lie, Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichun-gen,Arch. for Math. VI (1881).
S. Lie, Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischenx, y, die eine Gruppe von Transformationen gestatten,Arch. Math. VIII, 187–453(1883).
S. Lie,Theorie der Transformationsgruppen, Bd. 1 (Bearbeitet unter Mitwirkung von F. Engel), Leipzig: B. G. Teubner(1888).
S. Lie, Die infinitesimalen Berührungstransformationen der Mechanik,Leipz. Ber. (1889).
S. Lie,Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Bearbeitet und heraus-gegeben von Dr. G. Scheffers), Leipzig: B. G. Teubner (1891).
S. Lie, Zur allgemeinen Théorie der partiellen Differentialgleichungen beliebiger Ordnung,Leipz. Ber. I, 53–128(1895).
S. Lie,Gesammelte Abhandlungen, Bd. 1–6, Leipzig-Oslo.
M. Noether, Sophus Lie,Math. Annale 53, 1–11 (1900).
P. J. Olver,Applications of Lie Groups to Differential Equations, New York: Springer-Verlag (1986).
L. V. Ovsiannikov, Group properties of differential equations, Novosibirsk: USSR Academy of Science, Siberian Branch (1962).
L. V. Ovsiannikov,Group Analysis of Differential Equations, Boston: Academic Press (1982).
A. Z. Petrov,Einstein Spaces, Oxford: Pergamon Press (1969).
E. M Polischuk,Sophus Lie, Leningrad: Nauka (1983).
V. V. Pukhnachev, Invariant solutions of Navier-Stokes equations describing free-boundary motions,Dokl. Akad. Nauk SSSR 202(2), 302–305 (1972).
W. Purkert, Zum Verhältnis von Sophus Lie und Friedrich Engel,Wiss. Zeitschr. Ernst-Moritz-Arndt-Universität Greifs-wald, Math.-Naturwiss. Reihe XXXIII, Heft 1–2, 29-34, (1984).
G. F. B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,Abh. K. Ges. Wiss. Göttingen8 (1860).
L.I. Sedov,Similarity and Dimensional Methods in Mechanics, 4th ed., New York: Academic Press (1959).
H. Stephani,Differential Equations: Their Solution Using Symmetries, Cambridge: Cambridge University Press(1989).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ibragimov, N.H. Sophus lie and harmony in mathematical physics, on the 150th anniversary of his birth. The Mathematical Intelligencer 16, 20–28 (1994). https://doi.org/10.1007/BF03026611
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03026611