Skip to main content

Enzymatic release of ferulic acid fromIpomoea batatas L. (sweet potato) stem

Abstract

Ferulic acid is a phenolic compound that serves as a major biosynthetic precursor of vanillin in higher plants. We investigated the ability of the 3 commercial enzymes—Ultraflo L, Viscozyme L, and α-Amylase—to induce the release ferulic acid from theIpomoea batatas L. (sweet potato) stem. The rate of release for ferulic acid was optimal when Ultraflo L (1.0%) was used compared with the other enzymes, whereas Viscozyme L was most effective for the release of vanillic acid and vanillin. Thus, these enzymes may be useful for the large-scale production of ferulic acid and other phenolic compounds from sweet potato stem.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Goodner, K. L., P. Jella, and R. L. Rouseff (2000) Determination of vanillin in orange, grapefruit, tangerine, lemon, and lime juices using GC-olfactometry and GC-MS/MS.J. Agric. Food Chem. 48: 2882–2886.

    Article  CAS  Google Scholar 

  2. [2]

    Sakai, S., H. Kawamata, T. Kogure, N. Mantani, K. Terasawa, M. Umatake, and H. Ochiai (1999) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells.Mediat. Inflamm. 8: 173–175.

    Article  CAS  Google Scholar 

  3. [3]

    Graf, E. (1992) Antioxidant potential of ferulic acid.Free Radic. Biol. Med. 13: 435–448.

    Article  CAS  Google Scholar 

  4. [4]

    Kato, A., J. I. Azuma, and T. Koshijima (1983) A new feruloylated trisaccharide from bagasse.Chem. Lett. 12: 137–140.

    Article  Google Scholar 

  5. [5]

    Smith, M. M. and R. D. Hartley (1983) Occurrence and nature of ferulic acid substitution of cell-wall polysacchatides in graminaceous plants.Carbohydr. Res. 118: 65–80.

    Article  CAS  Google Scholar 

  6. [6]

    Heinomen, M., D. Rein, M. T. Satue-Gracia, S. W. Huang, J. B. German, and E. N. Frankel (1998) Effect of protein on the antioxidant activity of phenolics compounds in a lecithin-liposome oxidation system.J. Agric. Food Chem. 46: 917–922.

    Article  Google Scholar 

  7. [7]

    Friedman, M. and H. S. Jurgens (2000) Effect of pH on the stability of plant phenolic compounds.J. Agric. Food. Chem. 48: 2101–2110.

    Article  CAS  Google Scholar 

  8. [8]

    Ou, S. and K.-C. Kwok (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods.J. Sci. Food Agric. 84: 1261–1269.

    Article  CAS  Google Scholar 

  9. [9]

    Yoon, S.-H., C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.-S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, and S.-W. Kim (2005) Production of vanillin from ferulic acid using recombinant strains ofEscherichia coli.Biotechnol. Bioprocess Eng. 10: 378–384.

    Article  CAS  Google Scholar 

  10. [10]

    Sun, R.-C., X-F. Sun, and S.-H. Zhang (2001) Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maize stems, oil palm frond fiber, and fast-growing poplar wood.J. Agric. Food. Chem. 49: 5122–5129.

    Article  CAS  Google Scholar 

  11. [11]

    Mathew, S. and T. E. Abraham (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications.Crit. Rev. Biotechnol. 24: 59–83.

    Article  CAS  Google Scholar 

  12. [12]

    Tran, L. H., M. Yogo, H. Ojima, O. Idota, K. Kawai, T. Suzuki, and K. Takamizawa (2004) The production of xylitol by enzymatic hydrolysis of agricultural wastes.Biotechnol. Bioprocess Eng. 9: 223–228.

    Article  CAS  Google Scholar 

  13. [13]

    Faulds, C. B., A. I. Sancho, and B Bartolome (2002) Mono- and dimeric ferulic acid release from brewer's spent grain by fungal feruloyl esterases.Appl. Microbiol. Biotechnol. 60: 489–494.

    Article  CAS  Google Scholar 

  14. [14]

    Bartolome, B. and C. Gomez-Cordoves (1999) Barley spent grain: release of hydroxycinnamic acids (ferulic andp-coumaric acids) by commercial enzyme preparations.J. Sci. Food Agric. 79: 435–439.

    Article  CAS  Google Scholar 

  15. [15]

    Sorensen, H. R., A. S. Meyer, and S. Pedersen (2003) Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between alpha-L-arabinofuranosidases, endo-1,4-beta-xylanases, and beta-xylosidase activities.Biotechnol. Bioeng. 81: 726–731.

    Article  CAS  Google Scholar 

  16. [16]

    Micard, V., C. M. G. C. Renard, and J.-F. Thibault (1994) Studies on enzymic release of ferulic acid from sugar-beet pulp.Lebensm. Wiss. Technol. 27: 59–66.

    Article  CAS  Google Scholar 

  17. [17]

    Couteau, D. and P. Mathaly (1997) Purification of ferulic acid by adsorption after enzymic release from a sugar-beet pulp extract.Ind. Crop. Prod. 6: 237–252.

    Article  CAS  Google Scholar 

  18. [18]

    Kang, S. M., H. Y. Jung, Y. M. Kang, J. Y. Min, C. S. Karigar, J. K. Yang, S. W. Kim, Y. R. Ha, S. H. Lee, and M. S. Choi (2005) Biotransformation and impact of ferulic acid on phenylpropanoid and capsaicin levels inCapsicum annuum L. cv. P1482 cell suspension cultures.J. Agric. Food Chem. 53: 3449–3453.

    Article  CAS  Google Scholar 

  19. [19]

    Bartolome, B., C. B. Faulds, and G. Williamson (1997) Enzymic release of ferulic acid from barley spent grain.J. Cereal Sci. 25: 285–288.

    Article  CAS  Google Scholar 

  20. [20]

    Faulds, C. B., G. Mandalari, R. LoCurto, G. Bisignano, and K. W. Waldron (2004) Arabinoxylan and mono- and dimeric ferulic acid release from brewer's grain and wheat bran by feruloyl esterases and glycosyl hydrolases fromHumicola insolens.Appl. Microbiol. Biotechnol. 64: 644–650.

    Article  CAS  Google Scholar 

  21. [21]

    Cheetham, P. (1993) The use of biotransformations for the production of flavours and fragrances.Trends Biotechnol. 11: 478–488.

    Article  CAS  Google Scholar 

  22. [22]

    Rosazza, J. (1995) Biocatalysis, microbiology and chemistry: the power of positive linking.ASM News. 61: 241–245.

    Google Scholar 

  23. [23]

    Barghini, P., F. Montebove, M. Ruzzi, and A. Schiesser (1998) Optimal conditions for bioconversion of ferulic acid into vanillic acid byPseudomonas fluorescens BF13 cells.Appl. Microbiol. Biotechnol. 49: 309–314.

    Article  CAS  Google Scholar 

  24. [24]

    Bartolome, B., C. B. Faulds, M. Tuohy, G. P., Hazlewood, H. J. Gilbert, and G. Williamson (1995) Influence of different xylanases on the activity of ferulic acid esterases on wheat bran.Biotechnol. Appl. Biochem. 22: 65–73.

    CAS  Google Scholar 

  25. [25]

    Kroon, P. A. and G. Williamson (1996) Release of ferulic acid from sugar beet pulp by using arabinanase, arabinofuranosidase and an esterase fromAspergillus niger.Biotechnol. Appl. Biochem. 23: 263–267.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Myung-Suk Choi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Min, JY., Kang, SM., Park, DJ. et al. Enzymatic release of ferulic acid fromIpomoea batatas L. (sweet potato) stem. Biotechnol. Bioprocess Eng. 11, 372–376 (2006). https://doi.org/10.1007/BF03026256

Download citation

Keywords

  • ferulic acid
  • enzymatic treatment
  • sweet potato