Skip to main content
Log in

Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of tryptophan andN-CBZ-phenylalanine enantiomers

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Monolithic molecularly imprinted columns were designed and prepared by anin-situ thermal-initiated copolymerization technique for rapid separation of tryptophan andN-CBZ-phenylalanine enantiomers. The influence of polymerization conditions and separation conditions on the specific molecular recognition ability for enantiomers and diastereomers was investigated. The specious molecular recognition was found to be dependent on the stereo structures and the arrangement of functional groups of the imprinted molecule and the cavities in the molecularly imprinted polymer (MIP). Moreover, hydrogen bonding interactions and hydrophobic interactions played an important role in the retention and separation. Compared to conventional MIP preparation procedures, the present method is very simple, and its macroporous structure has excellent separation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X. D., F. Qin, X. M. Chen, Y. Q. Liu, and H. F. Zou (2004) Short columns with molecularly imprinted monolithic stationary phases for rapid separation of diastereomers and enantiomers.J. Chromatogr. B. 804: 13–18.

    Article  CAS  Google Scholar 

  2. Liu, Z.-S., Y.-L. Xu, C. Yan, and R.-Y. Gao (2004) Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography.Anal. Chim. Acta 523: 243–250.

    Article  CAS  Google Scholar 

  3. Owens, P. K., L. Karlsson, E. S. M. Lutz, and L. I. Andersson (1999) Molecular imprinting for bio- and pharmaceutical analysis.Trends Anal. Chem. 18: 146–154.

    Article  CAS  Google Scholar 

  4. Chen, W., F. Liu, X. Zhang, K. A. Li, and S. Tong (2001) The specificity of a chlorophenamine-imprinted polymer and its application.Talanta 55: 29–34.

    Article  CAS  Google Scholar 

  5. Zheng, N., Y.-Z. Li, W.-B. Chang, Z.-M. Wang, and T.-I. Li (2002) Sulfonamide imprinted polymers using co-functional monomers.Anal. Chim. Acta 452: 277–283.

    Article  CAS  Google Scholar 

  6. Spivak, D. and K. J. Shea, (1999) Molecular imprinting of carboxylic acids employing novel functional macroporous polymers.J. Org. Chem. 64: 4627–4634.

    Article  CAS  Google Scholar 

  7. Matsui, J., I. A. Nicholls, and T. Takeuchi (1998) Molecular recognition in cinchona alkaloid molecular imprinted polymer rods.Anal. Chim. Acta 365: 89–93.

    Article  CAS  Google Scholar 

  8. Bereczki, A., A. Tolokan, G. Horvaia, V. Horvath, F. Lanza, A. J. Hall, and B. Sellergren (2001) Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction.J. Chromatogr. A 930: 31–38.

    Article  CAS  Google Scholar 

  9. Ansell, R. J., D. Kriz, and K. Mosbach (1996) Molecularly imprinted polymers for bioanalysis: Chromatography, binding assays and biomimetic sensors.Curr. Opin. Biotechnol. 7: 89–94.

    Article  CAS  Google Scholar 

  10. Kriz, O., O. Ramstrom, and K. Mosbach (1997) Molecular imprinting: new possibilities for sensor technology.Anal. Chem. 69: 345A-349A.

    CAS  Google Scholar 

  11. Liang, C. D., H. Peng, X. Y. Bao, L. H. Nie, S. Z. Yao (1999) Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine.Analyst 124: 1781–1785.

    Article  CAS  Google Scholar 

  12. Yoshikawa, M., T. Fujisawa, J. Izumi, T. Kitao, and S. Sakamoto (1998) Molecularly imprinted polymeric membranes involving tetrapeptide EQKL derivatives as chiral-recognition sites toward amino acids.Anal. Chim. Acta 365: 59–67.

    Article  CAS  Google Scholar 

  13. Mayes, A. G. and K. Mosbach (1996) Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase.Anal. Chem. 68: 3769–3774.

    Article  CAS  Google Scholar 

  14. Hosoya, K., K. Yoshizako, Y. Shirasu, K. Kimata, T. Araki, N. Tanaka, and J. Haginaka (1996) Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography Structural contribution of cross-linked polymer network on specific molecular recognition.J. Chromatogr. A 728: 139–147.

    Article  CAS  Google Scholar 

  15. Haginaka, J. and C. Kagawa (2002) Unformly sized molecularly imprinted polymer for d-chlorpheniramine. Evaluation of retention and molecular recognition properties in an aqueous mobile phase.J. Chromatogr. A 948: 77–84.

    Article  CAS  Google Scholar 

  16. Liu, H. Y., K. H. Row, and G. L. Yang (2005) Monolithic molecularly imprinted columns for chromatographic separation.Chromatographia 61: 429–432.

    Article  CAS  Google Scholar 

  17. Hong, S. P., C. H. Lee, S. K. Kim, H. S. Yun, J. H. Lee, and K. H. Row (2004) Mobile phase compositions for ceramide III by normal-phase high-perfomance liquid chromatography.Biotechnol. Bioprocess Eng. 9: 47–51.

    Article  CAS  Google Scholar 

  18. Choi, D. Y. and K. H. Row (2004) Theoretical analysis of chromatographic peak asymmetry and sharpness by the moment method using two peptides.Biotechnol. Bioprocess Eng. 9: 495–499.

    Article  CAS  Google Scholar 

  19. Polyakova, Y., Y. M. Koo, and K. H. Row (2006) Application of ionic liquids as mobile phase modifier in HPLC.Biotechnol. Bioprocess Eng. 11: 1–6.

    Article  CAS  Google Scholar 

  20. Huang, X. D., H. F. Zou, X. M. Chen, Q. Z. Luo, and L. Kong (2003) Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of enantiomers and diastereomers.J. Chromatogr. A 984: 273–282.

    Article  CAS  Google Scholar 

  21. Yan, H. Y., L. M. Jin, and K. H. Row (2005) Special selectivity of molecularly imprinted monolithic stationary phase.J. Liq. Chromatogr. Relat. Technol. 28: 3147–3155.

    Article  CAS  Google Scholar 

  22. Yin, J., G. Yang, and Y. Chen (2005) Rapid and efficient chiral separation of nateglinide and itsl-enantiomer on monolithic molecularly imprinted polymers.J. Chromatogr. A 1090: 68–75.

    Article  CAS  Google Scholar 

  23. Svec, F., E. C. Peters, D. Sykora, and J. M. J. Frechet (2000) Design of the monolithic polymers used in capillary electrochromatography columns.J. Chromatogr. A 887: 3–29.

    Article  CAS  Google Scholar 

  24. Li, H., Y. Liu, Z. Zhang, H. Liao, L. Nie, and S. Yao (2005) Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase.J. Chromatogr. A 1098: 66–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Ho Row.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, H., Row, K.H. Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of tryptophan andN-CBZ-phenylalanine enantiomers. Biotechnol. Bioprocess Eng. 11, 357–363 (2006). https://doi.org/10.1007/BF03026253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026253

Keywords

Navigation