Skip to main content
Log in

Statistical optimization of the lysis agents for Gram-negative bacterial cells in a microfluidic device

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2006

Abstract

Through statistically designed experiments, lysis agents were optimized to effectively disrupt bacterial cells in a microfluidic device. Most surfactants caused the efficient lysis of Gram-positive microbes, but not of Gram-negative bacteria. A Plackett-Burman design was used to select the components that increase the efficiency of the lysis of the Gram-negative bacteriaEscherichia coli. Using this experimental design, both lysozyme and benzalkonium chloride were shown to significantly increase the cell lysis efficiency, and ATP was extracted in proportion to the lysis efficiency. Benzalkonium chloride affected the cell membrane physically, while lysozyme destroyed the cell wall, and the amount of ATP extracted increased through the synergistic interaction of these two components. The two-factor response-surface design method was used to determine the optimum concentrations of lysozyme and benzalkonium chloride, which were found to be 202 and 99 ppm, respectively. The lysis effect was further verified by microscopic observations in the microchannels. These results indicate that Gram-negative cells can be lysed efficiently in a microfluidic device, thereby allowing the rapid detection of bacterial cells using a bioluminescence-based assay of the released ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farkade, V. D., S. Harrison, and A. B. Pandit (2005) Heat induced translocation of proteins and enzymes within the cell: An effective way to optimize the microbial cell disruption process.Biochem. Eng. J. 23: 247–257.

    Article  CAS  Google Scholar 

  2. Chisti, Y. and M.-Y. Murray (1986) Disruption of microbial cell for intracellular products.Enzyme Microb. Technol. 8: 194–204.

    Article  CAS  Google Scholar 

  3. Belgrader, P., M. Okuzumi, F. Pourahmadi, D. A. Borkholder, and M. A. Northrup (2000) A microfluidic cartridge to prepare spores for PCR analysis.Biosens. Bioelectron. 14: 849–852.

    Article  CAS  Google Scholar 

  4. Kulmala, S. and J. Suomi (2003) Current status of modern analytical luminescence methods.Anal. Chim. Acta 500: 21–69.

    Article  CAS  Google Scholar 

  5. Selan, L., F. Berlutti, C. Passariello, M. C. Thaller, and G. Renzini (1992) Reliability of a bioluminescence ATP assay for detection of bacteria.J. Clin. Microbiol. 30: 1739–1742.

    CAS  Google Scholar 

  6. Venkateswaran, K., N. Hattori, M. T. La Duc, and R. Kern (2003) ATP as a biomarker of viable microorganisms in clean-room facilities.J. Microbiol. Methods 52: 367–377.

    Article  CAS  Google Scholar 

  7. Thore, A., A. Lundin, and S. Ansehn (1983) Firefly luciferase ATP assay as a screening method for bacteriuria.J. Clin. Microbiol. 17: 218–224.

    CAS  Google Scholar 

  8. Thore, A., A. A. Lundin, and S. Bergman (1975) Detection of bacteriuria by luciferase assay of adenosine triphosphate.J. Clin. Microbiol. 1: 1–8.

    CAS  Google Scholar 

  9. Lai-King, N. G., D. E. Taylor, and M. E. Stiles (1985) Estimation ofCamphylobacter spp. in broth culture by bioluminescence assay of ATP.Appl. Environ. Microbiol. 49: 730–731.

    Google Scholar 

  10. Blum, L. J. (1997) Bio- and chemiluminescent sensors. pp. 37–68. World Scientific, Singapore.

    Google Scholar 

  11. Brock, T. D. (2002)Biology of Microbiology. pp. 56–57. Prentice Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  12. Miller, T. E. (1969) Killing and lysis of gram-negative bacteria through the synergistic effect of hydrogen peroxide, ascorbic acid, and lysozyme.J. Bacteriol. 98: 949–955.

    CAS  Google Scholar 

  13. Kim, S. K., B. S. Lee, J. G. Lee, H. J. Seo, and E. K. Kim (2003) Continuous water toxicity monitoring using immobilizedPhotobacterium phosphoreum.Biotechnol. Bioprocess Eng. 8: 147–150.

    Article  CAS  Google Scholar 

  14. Effenhauser, C. S., G. J. M. Bruin, A. Paulus, and M. Ehrat (1997) Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips.Anal. Chem. 69: 3451–3457.

    Article  CAS  Google Scholar 

  15. Duffy, D. C., J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane).Anal. Chem. 70: 4974–4984.

    Article  CAS  Google Scholar 

  16. Kim, H., H.-J. Eom, J. Lee, J. Han, and N. S. Han (2004) Statistical optimization of medium composition for growth ofLeuconostoc citreum.Biotechnol. Bioprocess Eng. 9: 278–284.

    Article  CAS  Google Scholar 

  17. Yucel, N. and H. Ulusoy (2006) A Turkey survey of hygiene indicator bacteria andYersinia enterocolitica in raw milk and cheese samples.Food Control 17: 383–388.

    Article  Google Scholar 

  18. Ho, J. (2002) Future of biological aerosol detection.Anal. Chim. Acta 457: 125–148.

    Article  CAS  Google Scholar 

  19. L'Hostis, E., P. E. Michel, G. C. Fiaccabrino, D. J. Strike, N. F. de Rooij, and M. Koudelka-Hep (2000) Microreactor and electrochemical detectors fabricated using Si and EPON SU-8.Sens. Actuators B Chem. 64: 156–162.

    Article  Google Scholar 

  20. Roda, A., P. Pasini, M. Mirasoli, E. Michelini, and M. Guardigli (2004) Biotechnological applications of bioluminescence and chemiluminescence.Trends Biotechnol. 22: 295–303.

    Article  CAS  Google Scholar 

  21. Li, C., W.-C. Lee, and K. H. Lee (2003) Affinity separations using microfabricated microfluidic devices:In situ photopolymerization and use in protein separations.Biotechnol. Bioprocess Eng. 8: 240–245.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Ki Kim or Jin-Hwan Kim.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02932084.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YB., Park, JH., Chang, WJ. et al. Statistical optimization of the lysis agents for Gram-negative bacterial cells in a microfluidic device. Biotechnol. Bioprocess Eng. 11, 288–292 (2006). https://doi.org/10.1007/BF03026242

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026242

Keywords

Navigation