Skip to main content
Log in

Improved immobilized enzyme systems using spherical micro silica sol-gel enzyme beads

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Spherical micro silica sol-gel immobilized enzyme beads were prepared in an emulsion system using cyclohexanone and Triton-X 114. The beads were used for thein situ immobilization of transaminase, trypsin, and lipase. Immobilization during the sol to gel phase transition was investigated to determine the effect of the emulsifying solvents, surfactants, and mixing process on the formation of spherical micro sol-gel enzyme beads and their catalytic activity. The different combinations of sol-gel precursors affected both activity and the stability of the enzymes, which suggests that each enzyme has a unique preference for the silica gel matrix dependent upon the characteristics of the precursors. The resulting enzyme-entrapped micronsized beads were characterized and utilized for several enzyme reaction cycles. These results indicated improved stability compared to the conventional crushed form silica sol-gel immobilized enzyme systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tischer, W. and F. Wedekind (1999) Immobilized enzymes: Methods and applications.Top. Curr. Chem. 200: 95–126.

    Article  CAS  Google Scholar 

  2. Prakash, O. and L. S. B. Upadhyay (2006) Immobilization imparts stability to watermelon urease.Biotechnol. Bioprocess Eng. 11: 140–145.

    Article  CAS  Google Scholar 

  3. Kim, J., C.-S. Lee, J. Oh, and B. G. Kim (2001) Production of egg yolk lysolecithin with immobilized phospholipase A2 Enzyme Microb. Technol. 29: 587–592.

    Article  CAS  Google Scholar 

  4. Seo, W.-Y. and K. Lee (2004) Optimized conditions forin situ immobilization of lipase in aldehyde-siliica packed columns,Biotechnol. Bioprocess Eng. 9: 465–470.

    Article  CAS  Google Scholar 

  5. Wang, T.-H. and W.-C. Lee (2003) Immobilization of proteins on magnetic nanoparticles.Biotechnol. Bioprocess Eng. 8: 263–267.

    Article  CAS  Google Scholar 

  6. Gill, I. and A. Ballesteros (2000) Bioencapsulation within synthetic polymers (Part I): sol-gel encapsulated biologicals.Trends Biotechnol. 18: 282–296.

    Article  CAS  Google Scholar 

  7. Gill, I. and A. Ballesteros (2000) Bioencapsulation within synthetic polymers (Part II): non-sol-gel protein-polymer biocomposites.Trends Biotechnol. 18: 469–479.

    Article  CAS  Google Scholar 

  8. Kim, J. B., R. Delio, and J. S. Dordick (2002) Protease-containing silicates as active antifouling materialsBiotechnol. Prog. 18: 551–555.

    Article  CAS  Google Scholar 

  9. Jin, W. and J. D. Brennan (2002) Properties and applications of proteins encapsulated within sol-gel derived materials.Anal. Chim. Acta 461: 1–36.

    Article  CAS  Google Scholar 

  10. Livage, J. (1997) Sol-gel processes.Curr. Opin. Solid State Mater. Sci. 2: 132–138.

    Article  CAS  Google Scholar 

  11. Vidoto, E. A., F. S. Vinhado, M. S. M. Moreira, O. R. Nascimento, Y. Iamamoto, and K. J. Ciuffi (2002) Immobilization of beta halogenated ironporphyrin in the silica matrix by the sol-gel process.J. Non-Cryst. Solids 304: 151–159.

    Article  Google Scholar 

  12. Reetz, M. T., A. Zonta, and J. Simpelkamp (1995) Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol-gel materials.Angew. Chem. Int. Ed. Engl. 34: 301–303.

    Article  CAS  Google Scholar 

  13. Reetz, M. T., A. Zonta, and J. Simpelkamp (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials.Biotechnol. Bioeng. 49: 527–534.

    Article  CAS  Google Scholar 

  14. Gill, I., and A. Ballesteros (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: An efficient and generic approach.J. Am. Chem. Soc. 120: 8587–8598.

    Article  CAS  Google Scholar 

  15. Chen, Q., G. Kenausis, and A. Heller (1998) Stability of oxidases immobilized in silica gels.J. Am. Chem. Soc. 120: 4582–4585.

    Article  CAS  Google Scholar 

  16. Schuleit, M., and P. L. Luisi (2001) Enzyme immobilization in silica-hardened organogels.Biotechnol. Bioeng. 72: 249–253.

    Article  CAS  Google Scholar 

  17. Lobnik, A., and M. Cajlakovic (2001) Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide.Sens. Actuators B 74: 194–199.

    Article  Google Scholar 

  18. Bharathi, S., and O. Lev (2000) Sol-gel-derived prussian blue-silicate amperometric glucose biosensor.Appl. Biochem. Biotechnol. 89: 209–216.

    Article  CAS  Google Scholar 

  19. Williams, A. K., and J. T. Hupp (1998) Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes.J. Am. Chem. Soc. 120: 4366–4371.

    Article  CAS  Google Scholar 

  20. Ramanathan, K., B. Rees-Jönsson, and B. Danielsson (2001) Sol-gel based thermal biosensor for glucose.Anal. Chim. Acta 427: 1–10.

    Article  CAS  Google Scholar 

  21. Lee, W.-Y., K. S. Lee, T.-H. Kim, M.-C. Shin, and J.-K. Park (2000) Microfabricated conductometric urea biosensor based on sol-gel immobilized urease.Electroanalysis 12: 78–82.

    Article  CAS  Google Scholar 

  22. Iskandar, F., Mikrajuddin, and K. Okuyama (2001)In situ production of spherical silica particles containing self-organized mesopores.Nano Lett. 1: 231–234.

    Article  CAS  Google Scholar 

  23. Adachi, K., T. Iwamura, and Y. Chujo (2004) Novel synthesis of submicrometer silica spheres in non-alcoholic solvent by microwave-assisted sol-gel method.Chem. Lett. 33: 1504–1505.

    Article  CAS  Google Scholar 

  24. Lee, C.-M., S. Lim, G.-Y. Kim, D. Kim, D.-W. Kim, H.-C. Lee, and K.-Y. Lee (2004) Rosin microparticles as drug carriers: Influence of various solvents on the formation of particles and sustained-release of indomethacin.Biotechnol. Bioprocess Eng. 9: 476–481.

    Article  CAS  Google Scholar 

  25. Matsumoto, T., Y. Takayama, N. Wada, H. Onoda, K. Kojima, H. Yamada, and H. Wakabayashi (2003) Acid-free synthesis of poly-organo-siloxane spherical particles using a W/O emulsion.J. Mater. Chem. 13: 1764–1770.

    Article  CAS  Google Scholar 

  26. Barbé, C. J. A. and J. Barlett (2001) Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use. WO0162232.

  27. Bush, A. J., R. Beyer, R. Trautman, C. J. Barbé, and J. R. Bartlett (2004) Ceramic micro-particles synthesized using emulsion and sol-gel technology: An investigation into the controlled release of encapsulants and the tailoring of micro-particle size.J. Sol-Gel Sci. Technol. 32: 85–90.

    Article  CAS  Google Scholar 

  28. Barbé, C. J., J. Bartlett, L. Kong, K. Finnie, H. Q. Lin, M. Larkin S. Calleja, A. Bush, and G. Calleja (2004) Silica particles: A novel drug-delivery system.Adv. Mater. 16: 1959–1966.

    Article  Google Scholar 

  29. Shin, J. S., and B. G. Kim (1998) Kinetic modeling of omega-transamination for enzymatic kinetic resolution of alpha-methylbenzylamine.Biotechnol. Bioeng. 60: 534–540.

    Article  CAS  Google Scholar 

  30. Shin, J. S., and B. G. Kim (1996) Optical resolution of racemic 1-phenylethylamine catalyzed by aminotransferase and dehydrogenase.Ann. N. Y. Acad. Sci. 799: 717–724.

    Article  CAS  Google Scholar 

  31. O'Connell, P. J., and J. Varley (2001) Immobilization ofCandida rugosa lipase on colloidal gas aphrons (CGAs).Biotechnol. Bioeng. 74: 264–269.

    Article  Google Scholar 

  32. Nouaimi, M., K. Möschel, and H. Bisswanger (2001) Immobilization of trypsin on polyester fleece via different spacers.Enzyme Microb. Technol. 29: 567–574.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Gee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Cw., Yi, SS., Kim, J. et al. Improved immobilized enzyme systems using spherical micro silica sol-gel enzyme beads. Biotechnol. Bioprocess Eng. 11, 277–281 (2006). https://doi.org/10.1007/BF03026240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026240

Keywords

Navigation