Skip to main content
Log in

Deep drawing textures in low carbon steels

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

Some recent papers published on orientation selection during the static recrystallization of ferritic low carbon steels are reviewed. Both the oriented nucleation and selective growth theories are analyzed critically and classified according to the physical mechanisms underlying these theories. The review concentrates on the progress made by employing techniques of local orientation measurement such aselectron backscattering diffraction (EBSD) andorientation imaging microscopy (OIM). Using the latter technique, the present authors obtained strong evidence for the operation of a selective growth mechanism during the late stages of recrystallization of an ultra low carbon steel that was cold rolled to a reduction of 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. B. Hutchinson,Int. Metall. Rev. 29, 25 (1984).

    CAS  Google Scholar 

  2. R. K. Ray, J. J. Jonas and R. E. Hook,Int. Mater. Rev. 39, 129 (1994).

    CAS  Google Scholar 

  3. F. J. Humphreys and M. Hatherly, inRecrystallization and Related Annealing Phenomena, p. 188, Elsevier Science Ltd., Oxford (1995).

    Google Scholar 

  4. W. B. Hutchinson,Scripta metall. 27, 1471 (1992).

    Article  CAS  Google Scholar 

  5. H. Hu,Trans. Metall. Soc. AIME. 224, 75 (1962).

    ADS  CAS  Google Scholar 

  6. C. J. E. Smith and I. L. Dillamore,Met. Sci. J. 4, 161 (1970).

    Article  CAS  Google Scholar 

  7. P.A. Beck and P. R. Sperry,J. Appl. Phys. 21, 150 (1950).

    Article  ADS  CAS  Google Scholar 

  8. R. H. Goodenow,Trans. ASM 59, 804 (1966).

    CAS  Google Scholar 

  9. H. Inagaki,ISIJ Int. 34, 313 (1994).

    Article  CAS  Google Scholar 

  10. L. Kestens and J. J. Jonas,Metall. Mater. Trans. 27A, 155 (1996).

    Article  CAS  Google Scholar 

  11. I. L. Dillamore, C. J. E. Smith and T. W. Watson,Met. Sci. J. 1, 49 (1967).

    Article  CAS  Google Scholar 

  12. D. Vanderschueren, N. Yoshinaga and K. Koyama,ISIJ 36, 1046 (1996).

    Article  CAS  Google Scholar 

  13. H. Inagaki,Z. Metallkd.78, 630 (1987).

    CAS  Google Scholar 

  14. W. B. Hutchinson,Acta metall. 37, 1047 (1989).

    Article  CAS  Google Scholar 

  15. M. R. Barnett and L. Kestens,ISIJ Int. 39, 923 (1999).

    Article  CAS  Google Scholar 

  16. H. Inagaki,Z. Metallkd.78, 433 (1987).

    Google Scholar 

  17. M. R. Barnett,ISIJ Int. 38, 78 (1998).

    Article  CAS  Google Scholar 

  18. E Emren, U. von Schlippenbach and K. Lücke,Acta metall. 34, 2105 (1986).

    Article  CAS  Google Scholar 

  19. L. Kestens and J.J. Jonas, inProc. Recrystallization ’96, Monterey (ed., T. R. McNelley), p. 109, California, USA, (1996).

  20. D. N. Lee,Scripta metall. 32, 1689 (1995).

    Article  CAS  Google Scholar 

  21. Y. B. Park, D. N. Lee and G. Gottstein,Acta metall. 46, 3371 (1998).

    CAS  Google Scholar 

  22. J. H. Choi, S. Y. Kang, D. N. Lee and J. Yang, inProc. ICOTOM 12 (ed., J. A. Szpunar), Vol. 1, p. 298, NRC Research Press, Montreal (1999).

    Google Scholar 

  23. Y. B. Park, L. Kestens and J.J. Jonas, inProc. ReX ’99 (eds., T. Sakai and H. G. Suzuki), p. 751, The Japan Institute of Metal, Tsukuba, Japan (1999).

    Google Scholar 

  24. Y. Hayakawa and J.A. Szpunar,Acta metall. 45, 3721 (1997).

    CAS  Google Scholar 

  25. Y. Hayakawa and J.A. Szpunar,Acta metall. 45, 1285 (1997).

    CAS  Google Scholar 

  26. D. Juul Jensen, inOrientation Aspects of Growth During Recrystallization, p. 49, Risø National Laboratory, Risø-R-987 (EN) (1997).

  27. D. Juul Jensen,Acta metall. 43, 4117 (1995).

    Article  CAS  Google Scholar 

  28. F. J. Humphreys and M. Hatherly,in Recrystallization and Related Annealing Phenomena, p. 85, Elsevier Science Ltd-., Oxford (1995).

    Google Scholar 

  29. G. Gottstein, D.A. Molodov and L.S. Shvindlerman, inProc. 3rd Int. Conf. on Grain Growth:ICGG-3 (eds., H. Weiland, B.L. Adams and A.D. Rollett), p. 373 (1998).

  30. D. Wolf,J. Appl. Phys. 69, 185 (1991).

    Article  ADS  CAS  Google Scholar 

  31. G. Ibe and K. Luke,Archiv für das Eisenhüttenwese 39, 693 (1968).

    CAS  Google Scholar 

  32. L. Kestens, N. Yoshinaga, J.J. Jonas and Y. Houbaert, inProc. 3rd Int. Conf. on Grain Growth: ICGG-3 (eds., H. Weiland, B.L. Adams and A.D. Rollett), p. 621 (1998).

  33. L. Kestens, N. Yoshinaga, D. Vanderschueren and B.C. De Cooman, inProc. ReX ’99 (eds., T. Sakai and H. G. Suzuki), p. 745, The Japan Institute of Metals, Tsukuba, Japan (1999).

    Google Scholar 

  34. L.S. Tóth and J.J. Jonas,Scripta metall. 27, 359 (1992).

    Article  Google Scholar 

  35. T. Urabe and J. J. Jonas,ISIJ Int. 34, 435 (1994).

    Article  CAS  Google Scholar 

  36. P. Van Houtte, inThe MTM-FHM Software System Version 2, Users Manual (1995).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “ ’99 International Symposium on Textures of Materials”, held at Sunchun National University, Sunchun, April 21–22, 1999 under the auspices of The Korean Institute of Metals and Materials and The Research and Development Center for Automobile’s Parts and Materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kestens, L., Jonas, J.J. Deep drawing textures in low carbon steels. Metals and Materials 5, 419–427 (1999). https://doi.org/10.1007/BF03026154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026154

Key words

Navigation