Metals and Materials

, 3:1 | Cite as

Trialuminide intermetallic alloys for elevated temperature applications—overview

  • Woong -Seong Chang
  • B. C. Muddle


The binary trialuminides typically crystallize with the tetragonal D022 (or DO23) structures and frequently exist as line compounds, making it very difficult to produce them as single-phase material. As a result of their low symmetry, ordered tetragonal structures, these compounds show such limited ductility at and immediately above room temperature as to find no useful engineering application. The compound Al3Ti is known to deform by ordered twinning at ambient temperature, which does not disturb the D022 symmetry of the lattice during deformation, but leads to only four potential deformation systems, which is insufficient for the generalized von Mises plasticity criterion.

Recent research effort has moved to improving the ductility of the trialuminides by transforming their tetragonal (D022/D023) crystal structures into the closely-related ordered cubic Ll2 structure, in the hope that the increased number of independent slip systems in the cubic structure will enable the alloys to deform more easily. Significant ductility in compression, and measurable plastic strain on the tensile side of bend bars, have been reported, especially in Cr and Mn-modified Ll2 alloys. However, notwithstanding these hopeful signs in the Ll2 trialuminides, these cubic alloys remain uniformly brittle in tension at room temperature. At present, the brittle behaviour of the Ll2 trialuminides appears to be intrinsic to their nature, with little scope for improvement by microstructural modification. The controversy assocated with room temperature dislocation dissociation in the Ll2 trialuminides has been concluded that the superdislocations on 111 planes are APB-dissociated pairs rather than SISF-coupled partials.

In attempting to identify new approaches to overcoming the brittleness of trialuminide-based alloys, it is worth noting potential advantages of multiphase alloys over single phase alloys. The development of fine duplex microstructures, by combining judicious alloying with controlled thermal or thermo-mechanical treatments, appears to offer promise for enhancing the ductility of brittle monolithic alloys. Given this evidence, it is suggested that the design and development of multiphase or duplex microstructures for trialuminide-based alloys may provide an approach of interest in providing the ductility and/or toughness of such alloys.


Ductility Al3Ti High Temperature Phase Duplex Microstructure Intermetallic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    NMAB-419, National Academy Press, Washington, D.C. (1984).Google Scholar
  2. 2.
    P. Villars and L.D. Calvert,Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (2nd. Ed.), ASM, Metals Park, Ohio (1991).Google Scholar
  3. 3.
    J. C. Schuster and H. Ipser,Z. Metallkd.,81, 389 (1990).Google Scholar
  4. 4.
    M. Yamaguchi and H. Inui, inIntermetallic Compounds—Principles and Practice, Vol. 2 (eds., J. H. Westbrook and R. L. Fleischer), John Wiley & Sons, New York, NY, p. 147 (1995).Google Scholar
  5. 5.
    K. Hirukawa, H. Mabuchi and Y. Nakayama,Scripta metall.,25, 1211 (1991).CrossRefGoogle Scholar
  6. 6.
    A. Raman and K. Schubert,Z. Metallkd.,56, 40 (1965).Google Scholar
  7. 7.
    A. Raman and K. Schubert,Z. Metallkd.,56, 99 (1965).Google Scholar
  8. 8.
    A. Seibold,Z. Metallkd.,72, 712 (1981).Google Scholar
  9. 9.
    P. G. Nash, V. Vejins and W. W. Liang,Bull. of Alloy Phase Diagrams,3, 367 (1982).CrossRefGoogle Scholar
  10. 10.
    H. Mabuchi, K. Hirukawa and Y. Nakayama,Scripta metall.,23, 1761 (1989).CrossRefGoogle Scholar
  11. 11.
    H. Mabuchi, K. Hirukawa, H. Tsuda and Y. Nakayama,Scripta metall.,24, 505 (1990).CrossRefGoogle Scholar
  12. 12.
    H. Mabuchi, K. Hirukawa, K. Katayama, H. Tsuda and Y. Nakayama,Scripta metall.,24, 1553 (1990).CrossRefGoogle Scholar
  13. 13.
    S. Zhang, J. P. Nic and D. E. Mikkola,Scripta metall.,24, 57 (1990).CrossRefGoogle Scholar
  14. 14.
    W.O. Powers and J.A. Wert, Metall. Trans., 21A, 145 (1990).Google Scholar
  15. 15.
    D. G. Pettifor,Mater. Sci. Tech.,4, 675 (1988).Google Scholar
  16. 16.
    K. S. Kumar, inStructural Intermetallics (eds., R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal), TMS, Warrendale, PA, p. 87 (1993).Google Scholar
  17. 17.
    F. H. Hayes, inTernary Alloys-A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Vol. 3 (eds., G. Petzow and G. Effenberg), VCH, New York, p. 426 (1993).Google Scholar
  18. 18.
    W. -S. Chang and B. C. Muddle,Mater. Sci. Eng,A192/193, 233 (1995).Google Scholar
  19. 19.
    W. -S. Chang and B. C. Muddle,Micron,25, 519 (1994).CrossRefGoogle Scholar
  20. 20.
    W. -S. Chang and B. C. Muddle, Metals & Materials,2, 233 (1996).CrossRefGoogle Scholar
  21. 21.
    M. Yamaguchi and Y. Umakoshi,Prog. Mat. Sci.,34, 1 (1990).CrossRefGoogle Scholar
  22. 22.
    E. P. George, D. P. Pope, C. L. Fu and J. H. Schneibel,ISIJ International,31, 1063 (1991).CrossRefGoogle Scholar
  23. 23.
    D. G. Morris, inStructural Intermetallics (eds., R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal), TMS, Warrendale, PA, p. 97 (1993).Google Scholar
  24. 24.
    D. E. Mikkola, J. P. Nic, S. Zhang and W. W. Milligan, ISIJ International,31, 1076 (1991).CrossRefGoogle Scholar
  25. 25.
    C. McCullough, J. J. Valencia, C. G. Levi and R. Mehrabian,Acta metall.,37, 1321 (1989).CrossRefGoogle Scholar
  26. 26.
    J. L. Murray, inBinary Alloy Phase Diagrams (2nd. ed.), Vol. 1 (ed., T. B. Massalski), ASM International, Materials Park, OH, p. 225 (1990).Google Scholar
  27. 27.
    A. Raman and K. Schubert,Z. Metallkd.,56, 44 (1965).Google Scholar
  28. 28.
    F. J. J. Van Loo and G. D. Rieck,Acta metall.,21, 61 (1973).CrossRefGoogle Scholar
  29. 29.
    R. Miida,Jpn. J. Appl. Phys.,25, 1815 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    A. Loiseau, G. Van Tendeloo, R. Portier and F. Ducastelle,J. Physique,46, 595 (1985).Google Scholar
  31. 31.
    K. Kaltenbach, S. Gama, D. Pinatti and K. Schulze,Z. Metallkd.,80, 511 (1989).Google Scholar
  32. 32.
    J. C. Mishurda and J. H. Perepezko, inMicrostructurel Property Relationships in Titanium Aluminides and Alloys (eds., Y -W. Kim and R. R. Boyer), TMS, Warrendale, PA, p. 3 (1991).Google Scholar
  33. 33.
    J. H. Perepezko and J. C. Mishurda, inTitanium ’92 Science and Technology (eds., F. H. Froes and I. Caplan), TMS, Warrendale, PA, p. 563 (1993).Google Scholar
  34. 34.
    R. Miida, M. Kasahara and D. Watanabe,Jpn. J. Appl. Phys.,19, L707 (1980).ADSCrossRefGoogle Scholar
  35. 35.
    A. Loiseau and C. Vannuffel,Phys. Stat. Sol.(a),107, 655 (1988).CrossRefGoogle Scholar
  36. 36.
    S. Ogawa, inOrder-Disorder Transformations in Alloys (ed., H. Warlimont), Springer-Verlag, Berlin, p. 241 (1974).Google Scholar
  37. 37.
    P. R. Subramanian, J. P. Simmons, M. G. Mendiratta and D. M. Dimiduk,Mat. Res. Soc. Symp. Proc.,133, p. 51 (1989).Google Scholar
  38. 38.
    R. C. Hansen and A. Raman,Z. Metallkd.,61, 115 (1970).Google Scholar
  39. 39.
    D. P. Pope and S. S. Ezz,Int. Met. Rev.,29, 136 (1984).Google Scholar
  40. 40.
    M. Yamaguchi, Y. Umakoshi and T. Yamane,Phil. Mag.,A55, 301 (1987).ADSGoogle Scholar
  41. 41.
    V. K. Vasudevan, R. Wheeler and H. L. Fraser,Mat. Res. Soc. Symp. Proc.,133, p. 705 (1989).Google Scholar
  42. 42.
    G. Vanderschaeve and T. Sarrazin,Phys. Stat. Sol(a),43, 459 (1977).CrossRefGoogle Scholar
  43. 43.
    Y. Umakoshi, M. Yamaguchi, T. Yamane and T. Hirano,Phil. Mag.,A58, 651 (1988).ADSGoogle Scholar
  44. 44.
    A. Raman,Z. Metallkd.,57, 535 (1966).Google Scholar
  45. 45.
    K. Hashimoto, H. Doi and T. Tsujimoto,J. Jpn., Inst. Metals,49, 410 (1985).Google Scholar
  46. 46.
    M. Paruchuri and T. Massalski,Mat. Res. Soc. Symp. Proc.,213, 143 (1991).Google Scholar
  47. 47.
    T. Ahmed and H.M. Flower,Mater. Sci. Eng.,A152, 31 (1992).Google Scholar
  48. 48.
    C. T. Liu,Int. Met. Rev.,29, 168 (1984).Google Scholar
  49. 49.
    J. P. Nic, S. Zhang and D. E. Mikkola,Scripta metall.,24, 1099 (1990).CrossRefGoogle Scholar
  50. 50.
    J. P. Nic, S. Zhang and D. E. Mikkola,Mat. Res. Soc. Symp. Proc.,213, 697 (1991).Google Scholar
  51. 51.
    C. J. Sparks, W. D. Porter, J. H. Schneibel, W. C. Oliver and C. G. Golec, inAlloy Phase Stability and Design (eds. G. M. Stocks, D. P. Pope and A. F. Giamei)Mat. Res. Soc. Symp. Proc.,186, 175 (1991).Google Scholar
  52. 52.
    H. Mabuchi,Intermetallics,1, 1 (1993).MathSciNetCrossRefGoogle Scholar
  53. 53.
    J. H. Schneibel and W. O. Porter,Mat. Res. Soc. Symp. Proc.,133, p. 335 (1989).Google Scholar
  54. 54.
    I. S. Virk, M. B. Winnicka and R. A. Varin,Scripta metall.,24, 2181 (1990).CrossRefGoogle Scholar
  55. 55.
    V. Ya. Markiv, A. I. Storozhenko and I. N. Panyuta,Dop. Akad. Nauk Ukr. RSRA, Fiz-Mat. Tekh,36, 463 (1974).Google Scholar
  56. 56.
    W. -S. Chang, Ph. D Thesis, Department of Materials Engineering, Monash University, Clayton, Victoria, Australia, (1995).Google Scholar
  57. 57.
    M. B. Winnicka and R. A. Varin,Scripta metall.,25, 2297 (1991).CrossRefGoogle Scholar
  58. 58.
    Z. L. Wu and D. P. Pope,Acta metall. mater.,42, 509 (1994).CrossRefGoogle Scholar
  59. 59.
    L. Potez, A. Loiseau, S. Naka and G. Lapasset,J. Mater. Res.,7, 876 (1992).ADSCrossRefGoogle Scholar
  60. 60.
    P. Villars,J. Less-Common Met.,102, 199 (1984).CrossRefGoogle Scholar
  61. 61.
    D. G. Pettifor,New Scientist,29, 48 (1986).Google Scholar
  62. 62.
    C. T. Liu, J. A. Horton and D. G. Pettifor,Mat. Res. Soc. Symp. Proc.,133, 37 (1989).Google Scholar
  63. 63.
    P. R. Munroe,Scripta metall. mater.,27, 1373 (1992).CrossRefGoogle Scholar
  64. 64.
    A. K. Sinha,Trans. AIME,245, 237 (1969).Google Scholar
  65. 65.
    J. H. N. Van Vucht,J. Less-Common Metals,11, 308 (1966).CrossRefGoogle Scholar
  66. 66.
    N. Durlu and O.T. Inal,Scripta metall.,25, 2475 (1991).CrossRefGoogle Scholar
  67. 67.
    N. Durlu and O.T. Inal,Mater. Sci. Eng.,A152, 67 (1992).Google Scholar
  68. 68.
    P. R. Munroe and I. Baker,J. Mater. Res.,6, 943 (1991).ADSCrossRefGoogle Scholar
  69. 69.
    S. M. Kim, M. Kogachi, A. Kameyama and D. G. Morris,Acta metall. mater.,43, 3139 (1995).CrossRefGoogle Scholar
  70. 70.
    H. J. Beattie, inIntermetallic Compounds (ed. J. H. Westbrook), John Wiley & Sons, Inc., New York, p. 144 (1967).Google Scholar
  71. 71.
    E. V. Kozlov, N. M. Kormin and N. M. Matveyeva,Izv., Acad. Nauk., Ser., Metalli,5, 150 (1979).Google Scholar
  72. 72.
    N. Furushiro and S. Hori,Acta metall.,33, 867 (1985).CrossRefGoogle Scholar
  73. 73.
    A. Majumdar, Ph. D Thesis, Department of Materials Engineering, Monash University, Clayton, Australia (1989).Google Scholar
  74. 74.
    S. Srinivasan, P. B. Desch and R. B. Schwarz,Scripta metall.,25, 2513 (1991).CrossRefGoogle Scholar
  75. 75.
    J. H. Schneibel, J. A. Horton and W. D. Porter,Mater. Sci. Eng.,A152, 126 (1992).Google Scholar
  76. 76.
    R. A. Varin, M. B. Winnicka and I. S. Virk, inStructural Intermetallics (eds., R. Darolia, J. J. Lewandovki, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal), TMS, Warrendale, PA, p. 265 (1993).Google Scholar
  77. 77.
    K. S. Kumar and S. A. Brown,Acta metall. mater.,40, 1923 (1992).CrossRefGoogle Scholar
  78. 78.
    K. S. Kumar and S. A. Brown,Phil. Mag.,A65, 91 (1992).ADSGoogle Scholar
  79. 79.
    S. A. Brown and K. S. Kumar,J. Mater. Res.,8, 1763 (1993).ADSCrossRefGoogle Scholar
  80. 80.
    M. B. Winnicka and R. A. Varin,Scripta metall.,24, 611 (1990).CrossRefGoogle Scholar
  81. 81.
    M. B. Winnicka and R. A. Varin,Scripta metall.,25, 1289 (1991).CrossRefGoogle Scholar
  82. 82.
    K. Aoki and O. Izumi,Nippon Kinzoku Gakkaishi,43, 1190 (1979).Google Scholar
  83. 83.
    C. D. Turner, W. O. Powers and J. A. Wert,Acta metall.,37, 2635 (1989).CrossRefGoogle Scholar
  84. 84.
    R. Lerf and D. G. Morris,Acta metall. mater.,39, 2419 (1991).CrossRefGoogle Scholar
  85. 85.
    H. Inui, D. E. Luzzi, W. D. Porter, D. P. Pope, V. Vitek and M. Yamaguchi,Phil. Mag.,A65, 245 (1992).ADSGoogle Scholar
  86. 86.
    W. O. Powers and J. A. Wert,Metall. Trans.,A21, 145 (1990).Google Scholar
  87. 87.
    G. Hu, S. Chen, X. Wu and X. Chen,J. Mater. Res.,4, 78 (1991).Google Scholar
  88. 88.
    D. G. Morris,J. Mater. Res.,7, 303 (1992).ADSCrossRefGoogle Scholar
  89. 89.
    P. Veissiere and D. G. Morris,Phil. Mag.,A67, 491 (1993).ADSGoogle Scholar
  90. 90.
    S. Zhang, W. W. Milligan and D. E. Mikkola,Scripta metall. mater.,27, 1073 (1992).CrossRefGoogle Scholar
  91. 91.
    S. Zhang, J. P. Nic, W. W. Milligan and D. E. Mikkola,J. Mater. Res.,9, 553 (1994).ADSCrossRefGoogle Scholar
  92. 92.
    L. Christodoulou, inSuppl. 2 to Encyclopedia of Materials Science and Engineering (edited by R. W. Cahn), Pergamon, Oxford, p. 1346 (1990).Google Scholar
  93. 93.
    Y. -W. Kim and D. M. Dimiduk,J. Miner. Met. Mater. Soc, TMS,43, 1991, pp. 40–47.Google Scholar
  94. 94.
    S. Guha, P. R. Munroe and I. Baker, inHigh Temperature Ordered Intermetallic Alloys III (C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch, eds.),MRS Symp. Proc.,133, MRS, Pittsburgh, PA, 1989, p. 633.Google Scholar
  95. 95.
    R. Yang, J. A. Leake and R. W. Cahn,Mater. Sci. Eng.,A152, 227 (1992).Google Scholar
  96. 96.
    W. Funk and E. Blank,Metall. Trans.,19A, 987 (1988).Google Scholar
  97. 97.
    D. Shechtman, W. J. Boettinger, T. Z. Kattamis and F. S. Biancaniello,Acta Metall.,32, 749 (1984).CrossRefGoogle Scholar
  98. 98.
    P. R. Subramanian, M. G. Mendiratta, D. B. Miracle and D. M. Dimiduk, inIntermetallic Matrix Composites, (D. L. Anton, P. L. Martin, D. B. Miracle and R. McMeeking, eds.),MRS Symp. Proc.,194, MRS, Pittsburgh, PA, p. 147 (1990).Google Scholar
  99. 99.
    D. P. Mason, and D. C. Van Aken, inHigh Temperature Ordered Intermetallic Alloys IV (L. A. Johnson, D. P. Pope and J. O. Stiegler, eds.),MRS Symp. Proc.,213, MRS, Pittsburgh, PA, p. 1033 (1991).Google Scholar
  100. 100.
    B. Cockeram, H. A. Lipsitt, R. Srinivasan and I. Weiss,Scripta Metall. Mater.,25, 2109 (1991).CrossRefGoogle Scholar
  101. 101.
    M. G. Mendiratta, J. J. Lewandowski and D. M. Dimiduk,Metall. Trans.,22A, 1573 (1991).Google Scholar
  102. 102.
    C. -P. Reip and G. Sauthoff,Intermetallics 1, 159 (1993).CrossRefGoogle Scholar
  103. 103.
    M. G. Hebsur, I. E. Locci, S. V. Raj and M. V. Nathal,J. Mater. Res.,1, 1696 (1992).ADSCrossRefGoogle Scholar
  104. 104.
    P. R. Subramanian and J. P. Simmons,Scripta Metall. Mater.,25, 231 (1991).CrossRefGoogle Scholar
  105. 105.
    S. Zhang and D. E. Mikkola,Scripta Metall. Mater.,26, 1315 (1992).CrossRefGoogle Scholar
  106. 106.
    J. Y. Park, M. H. Oh, D. M. Wee, S. Miura and T. Mishima,Korean J. Mater. Res.,4, 906 (1994).Google Scholar
  107. 107.
    S. Biswas and R. A. Varin,Metall. Mater. Trans.,27A, 5 (1996).CrossRefGoogle Scholar
  108. 108.
    S. Biswas and R. A. Varin,Metall. Mater. Trans.,27A, 71 (1996).CrossRefGoogle Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • Woong -Seong Chang
    • 1
  • B. C. Muddle
    • 2
  1. 1.Research Institute of Industrial Science & TechnologyPohangKorea
  2. 2.Department of Material EngineeringMonash University ClaytonVic. 3168Australia

Personalised recommendations