Skip to main content
Log in

Effects of applied stress on coherent precipitates via a discrete atom method

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

Morphological evolution of coherent precipitates under an applied stress is analyzed by means of a discrete atom method, which is predicated upon Hookean atomic interactions and Monte Carlo diffusion, and mates no assumption of a specific shape. Precipitates having elastic constants different from those of the matrix phase art treated in dislocation-free, anisotropic elastic systems under a plane strain condition with a purely dilatational misfit. Under an applied tensile stress, soft particles with a positive misfit strain tend to become plates perpendicular to the applied stress axis, while hard particles elongate along the stress direction. If the elastic interaction between the applied stress and the coherency strain is strong enough, precipitates often split into smaller particles and then follow coarsening. Even in the absence of a coherency strain, particles are shown to undergo morphological evolution through Eshelby’s inhomogeneity effects. A particle shape depends on the following variables: the sign and magnitude of the coherency strain, the sense and magnitude of the applied stress, its stiffness relative to the matrix phase, and the magnitude of the interfacial energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Eshelby,Prog. Solid Mech. 2, 89 (1961).

    Google Scholar 

  2. J. K. Lee, D. M. Barnett, and H. I. Aaronson,Metall. Trans. 8A, 963 (1977).

    CAS  Google Scholar 

  3. T. Mura,Micromechanics of Defects in Solids, 2nd ed., p. 177, Martinus Nijhoff, Dordrecht (1987).

    Google Scholar 

  4. A. G. Khachaturyan,Theory of Structural Transformations in Solids, p. 213, Wiley & Son, New York (1983).

    Google Scholar 

  5. Y. Wang, L. Q. Chen and A. G. Khachaturyan, inSolid to Solid Phase Transformations (eds., W. C. Johnson et al.) p. 245, TMS, Warrendale, PA (1994).

    Google Scholar 

  6. Y. Wang, L. Q. Chen and A. G. Khachaturyan,Acta Metall. 41, 279 (1993).

    Article  CAS  Google Scholar 

  7. M. E. Thompson, C. S. Su and P. W. Voorhees,Acta Metall. 42, 2107 (1994).

    Article  CAS  Google Scholar 

  8. Z. A. Moschovidis and T. Mura,J. Appl. Mech. 42, 847 (1975).

    Google Scholar 

  9. S. Satoh and W. C. Johnson,Metall. Trans. 23A, 2761 (1992).

    CAS  Google Scholar 

  10. J. Gayda and D. J. Srolovitz,Acta Metall. 37, 641 (1989).

    Article  CAS  Google Scholar 

  11. J. K. Lee,Metail. Trans. 22A, 1197 (1991).

    Article  Google Scholar 

  12. J. K. Lee,Scripta Metall. 32, 559 (1995).

    Article  CAS  Google Scholar 

  13. J. K. Lee,Metail. Trans. 27A, 1449 (1996).

    Article  CAS  Google Scholar 

  14. J. K. Tien and S. M. Copley,Metall. Trans. 2, 215 (1971).

    Article  CAS  Google Scholar 

  15. T. Miyazaki, K. Nakamura and H. Mori,J. Mater. Sci. 14, 1827 (1979).

    Article  ADS  CAS  Google Scholar 

  16. W. F. Hosford and S. P. Agrawal,Metall Trans. 6A, 487 (1975).

    CAS  Google Scholar 

  17. B. Skrotzki, E. A. Starke, Jr., and G. J. Shiflet, inMicrostructures and Mechanical Properties of Aging Materials (eds., P. K. Liaw et al.) TMS, Warrendale, PA, in press.

  18. A. Pineau,Acta Metall. 24, 559 (1976).

    Article  CAS  Google Scholar 

  19. J. K. Lee and W. C. Johnson, inSolid to Solid Phase Transformations (eds., H. I. Aaronson et al.) p. 127, TMS, Warrendale, PA (1982).

    Google Scholar 

  20. W. C. Johnson, M. B. Berkenpas and D. E. Laughlin,Acta Metall. 36, 3149 (1988).

    Article  CAS  Google Scholar 

  21. W. Hort and W. C. Johnson,Metall. Trans. 27A, 1561 (1996).

    Google Scholar 

  22. W. G. Hoover, W. T. Ashurst, and R. J. Olness,J. Chem. Phys. 60, 4043 (1974).

    Article  ADS  CAS  Google Scholar 

  23. K. Binder. Monte Carlo Methods, p. 1, Springer-Verlag, New York (1979).

    Google Scholar 

  24. J. K. Lee, inPhase Transformations during the Thermal/Mechanical Processing of Steel (eds., E. B. Hawbolt and S, Yue) p 49, The Metallurgical Society of CIM, Montreal, Quebec (1995).

    Google Scholar 

  25. J. K. Lee, inMicromechanics of Advanced Materials (eds., S. N. G. Chu et al.) p. 41, TMS, Warrendale, PA (1995).

    Google Scholar 

  26. R. W. Little,Elasticity, p. 87, Prentice-Hall, Englewood Cliffs, NJ (1973).

    Google Scholar 

  27. J. M. Howe and D. A. Smith,Acta Metall. 40, 2343 (1992).

    Article  CAS  Google Scholar 

  28. J. K. Lee and H. I. Aaronson,Acta Metall 23, 799 (1975).

    Article  Google Scholar 

  29. H. I. Aaronson and C. Wells,Trans. AIME,206, 1216 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.K. Effects of applied stress on coherent precipitates via a discrete atom method. Metals and Materials 2, 183–193 (1996). https://doi.org/10.1007/BF03026093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026093

Keywords

Navigation