Skip to main content
Log in

Texture in CuZnAl shape memory alloys

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

The pseudoelastic elongation and the Young’s modulus were estimated using lexture and orientation dependent properties in the 95.5% hot-rolled Cu-14.0 wt% Zn-8.0 wt% Al, in the 96.7% extruded Cu -17.7 wt% Zn-7.0 wt% Al-0.5 wt%Ti and in the 95% cold drawn Cu-27.1 wt% Zn-4.6 wt% Al shape-memory-alloys. The textures were measured in martensitic phases, and the austenitic textures were calculated using texture transformation, which gave rise to the maximum possible shape change for a particular application. The maximum value of the pseudoelastic elongation (6.55%) was found at the normal direction in the sheet and a minimum value of 2.23% at 35° from the normal direction to the rolling direction. In the rod and wire the maximum value 4.80% and 5.28% were found at 45 and 90° from the axis direction. The anisotropic constant 1.5, 1.2 and 1.3 of the Young’s modulus were found in the sheet, rod and wire, respectively. These values enabled us to estimate the optimum texture for a technological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Duerig, K. N. Melton, D. Stöckel and C. M. Way-man (eds.),Engineering Aspects of Shape-Memory-Alloys, Butterworth-Heinemann, London, (1990).

    Google Scholar 

  2. K. Otsuka and K. Shimizu,Int. Metals Rev.,31, 93 (1986).

    CAS  Google Scholar 

  3. H. J. Bunge,Texture Analysis in Materials Science, Butt-erworth, London (1982).

    Google Scholar 

  4. M. Dahms and H. J. Bunge,J. Appl. Cryst.,22, 439, (1989).

    Article  Google Scholar 

  5. E. Dahlem-Klein, H. Klein, N. J. Park and H. J. Bunge, Program System ODF-Analysis, Cuvillier Verlag, Göttingen (1993).

    Google Scholar 

  6. M. Dahms, N. J. Park and H. J. Bunge,Mat. Sci. Forum,157–162, 507 (1994).

    Article  Google Scholar 

  7. N. J. Park and H. J. Bunge,Textures and Microstructures,14–18, 231 (1991).

    Google Scholar 

  8. K. Otsuka and K. Shimizu,Int. Metals Rev.,32, 93 (1986).

    Google Scholar 

  9. K. Atachi, J. Perkins and C. M. Wayman,Acta Met.,12, 1343 (1988).

    Google Scholar 

  10. N. J. Park and H. J. Bunge,Mat. Sci. Forum,157–162, 563 (1994).

    Article  Google Scholar 

  11. G. Gueénin, M. Morin, P.F. Gobin, W. Dejonghe and L. Delaey,Scripta Met.,11, 1071 (1977).

    Article  Google Scholar 

  12. J. F. Nye,Physical Properties of Crystals, Clarendon Press, London, (1957).

    Google Scholar 

  13. N. J. Park, H. Klein, E. Dahlem-Klein and H. J. Bunge,Physical Properties of Textured Materials, Cuvillier Verlag, Göttingen (1994).

    Google Scholar 

  14. W. Voigt,Lehrbuch der Kristallphysik, B. G. Teubner Verlag, Leipzig (1928).

    Google Scholar 

  15. A. Reuss,Z. Angew. Math. Mech.,9, 49 (1929).

    Article  CAS  Google Scholar 

  16. R. Hill, Proc. Phys. Soc,A65, 349 (1952).

    ADS  Google Scholar 

  17. N. J. Park and H. J. Bunge,Mat. Sci. Forum,157162, 1663 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, N.J. Texture in CuZnAl shape memory alloys. Metals and Materials 2, 159–168 (1996). https://doi.org/10.1007/BF03026090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026090

Keywords

Navigation