Skip to main content
Log in

Microstructural control of and mechanical properties of mechanically alloyed tungsten heavy alloys

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

93W-5.6Ni-l.4Fe tungsten heavy alloys with controlled microstructures were fabricated by mechanically alloying of elemental powders of tungsten, nickel and iron by two different process routes. One was the full mechanical alloying of blended powders with a composition of 93W-5.6Ni-l.4Fe, and the other was the partial mechanical alloying of blended powders with a composition of 30W-56Ni-14Fe followed by blending with tungsten powders to form a final composition of 93W-5.6Ni-l.4Fe. The raw powders were consolidated by die compaction followed by solid state sintering at 1300°C for 1 hour in a hydrogen atmosphere. The solid state sintered tungsten heavy alloys were subsequently liquid phase sintered at 1445∼1485°C for 4-90 min. The two-step sintered tungsten heavy alloy using mechanically alloyed 93W-5.6Ni-l.4Fe powders showed tungsten particles of about 6-15 μm much finer than those of 40 um in a conventional liquid phase sintered tungsten heavy alloy. An inhomogeneous distribution of the solid solution matrix phase was obtained in the two-step sintered tungsten heavy alloy using partially mechanically alloyed powders. The two-step sintered tungsten heavy alloy using mechanically alloyed 93W-5.6Ni-l.4Fe powders showed larger elongation of 16% than that of 1% in the solid state sintered tungsten heavy alloy due to the increase in matrix volume fraction and decrease in W/W contiguity. Dynamic torsional tests of the two-step sintered tungsten heavy alloys showed reduced shear strain at maximum shear stress than did the sintered tungsten heavy alloys using the conventional liquid phase sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. V. Lenel,Powder Metallurgy: Principles and Applications, MPIF, Princeton, NJ (1980).

    Google Scholar 

  2. R. M. German, inTungsten and Tungsten Alloys-1992 (eds., A. Bose and R.J. Dowding), p. 1, MPIF, Princeton, NJ (1992).

    Google Scholar 

  3. R. M. German,Sintering Theory and Practice, John Wiley & Sons, Inc., New York, NY (1996).

    Google Scholar 

  4. L. S. Magness and T.G. Farrand,Proc. 1990 Army Science Conf., p. 149, Durham, NC (1990).

  5. S. Cytron, inProc. Inter. Conf. on Adv. Composite Mater. (eds., T. Chandra and A.K. Dhingra), p. 973, TMS, Warren-dale, PA (1993).

    Google Scholar 

  6. D. K. Kim, S. Lee, H. J. Ryu and S. H. Hong,J. Kor. Inst. Met. & Mater. 37, 33 (1999).

    CAS  Google Scholar 

  7. K. T. Ramesh and R. S. Coates,Metall. Trans. A 23, 2625 (1992).

    Article  Google Scholar 

  8. S. H. Hong, H. J. Ryu, E. P. Kim and W. H. Baek,Key Engineering Mater. 141-143, 453 (1998).

    Article  CAS  Google Scholar 

  9. R. M. German, L. L. Bourguignon and B. H. Rabin,J. Met. 37, 36 (1985).

    CAS  Google Scholar 

  10. K. S. Churn and D. N. Yoon,Powder Met. 22, 175 (1979).

    CAS  Google Scholar 

  11. J. Gurland,Trans. AIME 212, 452 (1958).

    CAS  Google Scholar 

  12. A. Bose, H. Couque and J. Lankford, Jr., inTungsten and Tungsten Alloys 1992 (eds., A. Bose and R.J. Dowding), p. 291, MPIF, Princeton, NJ (1992).

    Google Scholar 

  13. A. Bose and R.M. German,Metall. Trans. A 19, 3100 (1988).

    Article  Google Scholar 

  14. R. J. Dowding, inRecrystallization ’90 (ed., T. Chandra), p. 237, TMS, Warrendale, PA (1990).

    Google Scholar 

  15. W. E. Gurwell, inProc. 2nd Inter. Conf. on Tungsten and Refractory Metals (eds., A. Bose and R.J. Dowding), p. 65, MPIF, Princeton, NJ (1994).

    Google Scholar 

  16. M. L. Ovecoglu, B. Ozkal and C. Suryanarayana,J. Mater. Res. 11, 1673 (1996).

    Article  ADS  CAS  Google Scholar 

  17. H. J. Ryu, S. H. Hong and W. H. Baek,J. Mater. Proc. Tech. 63, 292 (1997).

    Article  Google Scholar 

  18. C. Zubillaga, F. Hernandez, J. J. Urcola and M. Fuentes,Acta metall. 37, 1865 (1989).

    Article  CAS  Google Scholar 

  19. B. H. Rabin, A. Bose and R. M. German,Int. J. Powder Metall. 25, 21 (1989).

    CAS  Google Scholar 

  20. I. M. Lifshitz and V. V. Slyozov,J. Phys. Chem. Solids 19, 35(1961).

    Article  ADS  Google Scholar 

  21. A. J. Ardell,Acta metall. 20, 61 (1972).

    Article  Google Scholar 

  22. J. W. Noh,Ph. D. Thesis, Korea Advanced Institute of Science and Technology (1993).

  23. G. R. Johnson, J. M. Hoegfeldt, U. S. Lindholm and A. Nagy,J. Eng. Mater. Tech. 105, 42 (1983).

    Article  Google Scholar 

  24. R. C. Batra and Z. Peng,Int J. Impact Eng. 16, 375 (1995).

    Article  Google Scholar 

  25. K.-M. Cho, S. Lee, S. R. Nutt and J. Duffy,Acta metall. mater. 41, 923 (1993).

    Article  CAS  Google Scholar 

  26. M. Zhou, A. Needleman and R. J. Cliton,J. Mech. Phys. Solids 42, 423(1994).

    Article  ADS  MATH  Google Scholar 

  27. D. K. Kim, S. Lee, H. S. Song,Metall. Mater. Trans. A 29, 1057 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, H.J., Hong, S.H., Lee, S. et al. Microstructural control of and mechanical properties of mechanically alloyed tungsten heavy alloys. Metals and Materials 5, 185–191 (1999). https://doi.org/10.1007/BF03026051

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026051

Key words

Navigation