Skip to main content
Log in

Numerical procedure for simulation of multicomponent and multi-layered phase diffusion

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

A mass balance error-free numerical procedure for simulation of multicomponent and multi-layered phase diffusional reactions has been suggested, based on an explicit fixed grid finite difference method. Basically, a local equilibrium was assumed at each phase interface and one dimensional movement of interfaces was considered. Attention was paid to the treatments of newly formed thin phase layers and different molar volumes among interacting phases, together with the removal of a mass balance error. Specially derived finite difference forms were used to treat phase layers thinner than two inter-grid distances. A new flux balance equation which is independent from the molar volume differences among phases and leaves no mass balance error was developed by a transformation of space variable system and by a systematic analysis of sources of mass balance error, respectively. Through some model simulations, it could be shown that the present numerical procedure cantreat multi-layered phase diffusion including thin layered phases and can reproduce transitions of layer sequences during diffusional reactions successfully, leaving no mass balance error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.-J. Lee and K. H. Oh,Z. Metallkd. 87, 95 (1996).

    Google Scholar 

  2. S. Crusius, G. Inden, U. Knoop, L. Hoglund and J. Ågren,Z. Metallkd. 83, 673 (1992).

    CAS  Google Scholar 

  3. S. K. Kim, N. J. Kim, G. Shin and C. H. Lee,J. Kor. Inst. Met. & Mater. 33, 1144 (1995).

    CAS  Google Scholar 

  4. A. J. Hickl and R. W. Heckel,Metall. Trans. 6A, 431 (1975).

    CAS  Google Scholar 

  5. J. Crank,The Mathematics of Diffusion, Clarendon Press, Oxford (1975).

    Google Scholar 

  6. Y. Zhou and T. H. North,Modelling Simul. Mater. Sci. Eng. 1, 505 (1993).

    Article  ADS  CAS  Google Scholar 

  7. L. Kaufman and H. Bernstein,Computer Calculation of Phase Diagrams, Academic Press, New York (1970).

    Google Scholar 

  8. B.-J. Lee, N. M. Hwang and H. M. Lee,Acta mater. 45, 1867 (1997).

    Article  CAS  Google Scholar 

  9. B.-J. Lee,Acta mater. 45, 3993 (1997).

    Article  CAS  Google Scholar 

  10. B.-J. Lee,Scripta mater. 38, 499 (1998).

    Article  CAS  Google Scholar 

  11. B.-J. Lee,J. Kor. Inst. Met. & Mater. 31, 480 (1993).

    CAS  Google Scholar 

  12. J.-O. Andersson and J. Agren,J. Appl. Phys. 72, 1350 (1992).

    Article  ADS  CAS  Google Scholar 

  13. J. Fridberg, L.-E. Torndahl and M. Hillert,Jernkont. Ann. 153, 263 (1969).

    CAS  Google Scholar 

  14. B.-J. Lee,Proceedings of the 6 th Symposium on Phase Transformation (eds., S.-K. Hwang, J.-K. Park and J.-S. Lee), p. 67, Kor. Inst. Met. & Mater., Korea (1996).

    Google Scholar 

  15. J. S. Bae, J. R. Soh, S. K. Kim, Y. D. Lee and H. M. Lee,J. Kor. Inst. Met. & Mater. 36, 402 (1998).

    CAS  Google Scholar 

  16. H. M. Lee, J. S. Bae, J. R. Soh, S. K. Kim and Y. D. Lee,Mater. Trans. JIM 39, 633 (1998).

    CAS  Google Scholar 

  17. J.-O. Andersson, L. Höglund, B. Jönsson and J. Ågren, inFundamentals and Applications of Ternary Diffusion (ed., G. R. Purdy), p. 153, Pergamon Press, New York (1990).

    Google Scholar 

  18. P. Nash (Ed.),Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH (1991).

    Google Scholar 

  19. L. S. Castleman and L. L Seigle,Trans. TMS-AIME 212, 589 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BJ. Numerical procedure for simulation of multicomponent and multi-layered phase diffusion. Metals and Materials 5, 1–15 (1999). https://doi.org/10.1007/BF03025998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03025998

Key words

Navigation