Skip to main content
Log in

Environment and R-ratio effects on fatigue crack propagation transitions in Ti-6A1-4V (ELI)

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

The multiple-sloped relationship between da/dN and AK in stage II fatigue crack propagation regime in most engineering alloys has been a subject of considerable research efforts. Even though the crack closure is recognized as a crucial factor affecting FCP rates, closure effect on transition behavior is often ignored due to the uncertainties associated with ΔKeff value and the difficulties in measuring closure especially in aqueous environment. The present study therefore focused on the closure-free transition behavior in mill annealed Ti-6A1-4V in moist air and 1% NaCl at a fixed potential of -500 mVSCE as a function ofR ratio. The complex da/dN-ΔK relationship in Ti-6A1-4V remains after closure-correction for eachR ratio and environment, suggesting that closure is not a controlling factor for a transition, while it may complicate transition behavior. After closure-correction, the transition points and slopes are insensitive to R ratio in moist air, suggesting that R ratio effect on transition behavior in moist air is mostly due to crack closure. The 1% NaCl solution further complicates the da/dN-ΔKeff shape in Ti-6A1-4V at R ratios of 0.1 and 0.4 by superimposing cyclic stress corrosion cracking (SCC)-induced transition at intermediate ΔK regime. Varying R ratio in 1% NaCl is complex and appears to modify the cyclic and/or static SCC contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Piascik and R. P. Gangloff,Metall. Trans. A.,22A, 2415 (1990).

    ADS  Google Scholar 

  2. R. S. Piascik and R. P. Gangloff,Metall. Trans. A.,24A, 2751 (1993).

    ADS  CAS  Google Scholar 

  3. J. A. Feeney, J. C. McMillan and R. P. Wei,Metall. Trans. A.,1, 1741 (1970).

    Article  ADS  CAS  Google Scholar 

  4. G. R. Yoder, L. A. Cooley and T. W. Crooker,Scripta Metall. 16, 1021 (1982).

    Article  Google Scholar 

  5. R. J. H. Wanhill and L. Schra,“Corrosion Fatigue Crack Arrest in Aluminum Alloys”, Report NLR-TR-87128-U, National Aerospace Laboratory, Netherlands (1987).

  6. G. R. Yoder, L. A. Cooley and T. W. Crooker,Metall. Trans. A.,8A, 1737(1977).

    ADS  CAS  Google Scholar 

  7. G. R. Yoder, F. H. Froes and D. Eylon,Metall. Trans. A.,15A, 183 (1984).

    ADS  CAS  Google Scholar 

  8. P. E. Irving and C. J. Beevers,Metall. Trans. 5, 391 (1974).

    Article  CAS  Google Scholar 

  9. S. B. Chakrabortty and E. A. Starke, Jr.,Metall Trans. A.,10A, 1901 (1979).

    ADS  CAS  Google Scholar 

  10. D. B. Dawson and R. M. Pelloux,Metall. Trans. A.,5A, 723 (1974).

    ADS  Google Scholar 

  11. R. J. Bucci, Ph.D. Dissertation, Lehigh University, Bethlehem, PA (1970).

    Google Scholar 

  12. D. A. Meyn,Metall. Trans. 2, 853 (1971).

    Article  CAS  Google Scholar 

  13. R. J. Walter, J. D. Frandsen and R. P. Jewett, inHydrogen Effects in Metals (eds., L M. Berstein and A. W. Thompson), p. 819, TMS-AIME, Warrendale PA (1981).

    Google Scholar 

  14. M. O. Speidel, inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloys (eds., J. Hochmann, J. Slater, R.D. McCright and R.W. Stachle), p. 1071, NACE, Houston, TX (1977).

    Google Scholar 

  15. K. S. Chan,Metall. Trans. A.,24A, 2473 (1993).

    ADS  CAS  Google Scholar 

  16. P. C. Paris, M. P. Gomez and W. E. Anderson,The Trend in Engineering, Washington State Univ.,13, No. 1, 9(1961).

    Google Scholar 

  17. R. G. Forman, V. Shivakumar, J. C. Newman, Jr., S. M. Piotrowski and L. C. Williams, inFracture Mechanics: Eighteenth Symposium, p. 281, ASTM STP 945, ASTM, Philadelphia, PA (1988).

    Google Scholar 

  18. H. J. Gudladt and J. Petit,Scripta Metall. 25, 2507 (1991).

    Article  CAS  Google Scholar 

  19. R. O. Ritchie,Intl. Metall. Rev. 20, 205 (1979).

    Google Scholar 

  20. Mechanics of Fatigue Crack Closure, (eds., J. C. Newman and W. Elber), ASTM STP 982, ASTM, Philadelphia, PA (1988).

    Google Scholar 

  21. J. Petit, inTheoretical Concepts and Numerical Analysis of Fatigue, in print.

  22. D. C. Slavik, C. P. Blankenship, Jr., E. A. Starke, Jr. and R. P. Gangloff,Metall. Trans. A,24A, 1807 (1993).

    ADS  CAS  Google Scholar 

  23. D. C. Slavik, Ph.D. Dissertation, University of Virginia, Charlottesvilie, VA (1993).

    Google Scholar 

  24. T. T. Shih and R. P. Wei,Engr. Frac. Mech. 6, 19 (1974).

    Article  CAS  Google Scholar 

  25. M. O. Speidel, M. J. Blackburn, T. R. Beck and J. A. Feeney, inCorrosion Fatigue: Chemistry, Mechanics and Microstructure (eds., O. Devereux, A. J. McEvily and R. W. Staehle), p. 324, NACE, Houston, TX (1972).

    Google Scholar 

  26. M. D. Halliday and C. J. Beevers,Intl. J. Fracture,15, R27(1979).

    Article  CAS  Google Scholar 

  27. A. J. McEvily,Atlas of Stress-Corrosion and Corrosion Fatigue Curves, ASM International, Metals Park, OH (1990).

    Google Scholar 

  28. R. P. Gangloff, inEnvironment Induced Cracking of Metals (eds., R. P. Gangloff and M.B. Ives), p. 55, NACE, Houston, TX(1990).

    Google Scholar 

  29. J. C. Newman, Jr.,Intl. J. Fracture 24, No. 3, R131 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SS., Rhee, MH. & Lee, CS. Environment and R-ratio effects on fatigue crack propagation transitions in Ti-6A1-4V (ELI). Metals and Materials 2, 37–47 (1996). https://doi.org/10.1007/BF03025945

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03025945

Keywords

Navigation