Skip to main content
Log in

A century-long loop

  • Articles
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abraham, R. and Marsden, J.Foundations of Mechanics, 2nd ed., Addison-Wesley, New York, 1978.

    MATH  Google Scholar 

  2. Albouy, A. Integral manifolds of the N-body problem,Inventiones Math. 114 (1993), 463–488.

    Article  MATH  MathSciNet  Google Scholar 

  3. Barrow-Green, J.Poincaré and the Three Body Problem, American Mathematical Society, Providence, R.I., 1997.

    MATH  Google Scholar 

  4. Betti, E. Sopra gli spazi di un numéro qualunque di dimensioni,Annali di Matematica (2)4(1871), 140–158.

    Google Scholar 

  5. Birkhoff, G.D. Proof of Poincaré’s geometric theorem,Transactions of the American Mathematical Society 14 (1913), 14–22.

    MATH  MathSciNet  Google Scholar 

  6. Birkhoff, G.D.Dynamical Systems, American Mathematical Society, Providence, R.I., 1927.

    MATH  Google Scholar 

  7. Cabrai, H. On the integral manifolds of theN-body problem,Inventiones Math. 20 (1973), 59–72.

    Article  Google Scholar 

  8. Chen, X.Y. The topology of the integral manifoldM8 of the general three-body problem,Acta Astro. Sinica 19 (1978), 1–17 (in Chinese).

    Google Scholar 

  9. Dauben, J.W. Topology: Invariance of dimension, inCompanion Encyclopedia of the History and Philosophy of the Mathematical Sciences, vol. 2, pp. 939–946, Grattan-Guinness, I., editor, Routledge, London and New York, 1994.

    Google Scholar 

  10. Diacu, F.Singularities of the N-Body Problem—An Introduction to Celestial Mechanics, Les Publications CRM, Montréal, 1992.

    MATH  Google Scholar 

  11. Diacu, F. and Holmes, P.Celestial Encounters—The Origins of Chaos and Stability, Princeton University Press, Princeton, N.J., 1996.

    MATH  Google Scholar 

  12. Dieudonné, J.A History of Algebraic and Differential Topology 1900-1960, Birkhäuser, Boston, Ma., 1989.

    MATH  Google Scholar 

  13. Easton, R. Some topology of the three-body problem,Journ. Differential Eq. 10 (1971), 371–377.

    Article  MATH  MathSciNet  Google Scholar 

  14. Easton, R. Some topology of the n-body problem,Journ. Differential Eq. 19 (1975), 258–269.

    Article  MATH  MathSciNet  Google Scholar 

  15. lacob, A.Metode Topologice fn Mecanica Clasicä, Editura Academiei, BucureÅti, 1973.

    Google Scholar 

  16. Kuhn, T.S.The Structure of Scientific Revolutions, 3rd. edition, University of Chicago Press, Chicago, III., 1996.

    Book  Google Scholar 

  17. McCord, C.K., Meyer, K.R., and Wang, Q. The integral manifolds of the three body problem,Memoirs AMS 132, No. 628 (1998).

    Google Scholar 

  18. Poincaré, H. Analysis Situs,Journal de l’École Polytechnique, (2)1, (1895 1–121), or inOeuvres, tome 6, pp. 193-288, Gauthier-Villars, Paris, 1953.

    Google Scholar 

  19. Poincaré, H. Analyse de ses travaux scientifique,Acta Math. 38(1921), 3–135.

    Article  MathSciNet  Google Scholar 

  20. Poincaré, H.Oeuvres, tome 6, Gauthier-Villars, Paris, 1953.

    Google Scholar 

  21. Riemann, B. Fragment aus der Analysis Situs, inThe Collected Works of Bernhard Riemann, H. Weber, editor, pp. 479–482, Dover Publ., New York, 1953.

    Google Scholar 

  22. Saari, D.G. From rotation and inclination to zero configurational velocity surface, I. A natural rotating coordinate system,Celestial Mech. 33 (1984), 299–318.

    Article  MATH  MathSciNet  Google Scholar 

  23. Saari, D.G. From rotation and inclination to zero configurational velocity surface, II. The best possible configurational velocity surface,Celestial Mech. 40 (1987), 197–223.

    Article  MATH  MathSciNet  Google Scholar 

  24. Saari, D.G. Symmetry in n-particle systems,Hamiltonian Dynamical Systems (Boulder, CO 1987), K.R. Meyer and D.G. Saari, editors.Contemporary Math. 81 (1988), 23–42.

    Article  MathSciNet  Google Scholar 

  25. Scholz, E. Topology: geometric, algebraic, inCompanion Encyclopedia of the History and Philosophy of the Mathematical Sciences, vol. 2, pp. 927–938, Grattan-Guinness, I., editor, Routledge, London and New York, 1994.

    Google Scholar 

  26. Simó, C. El conjunto de bifurcacion en problema espacial de très cuerpos,Acta I Asamblea Nacional de Astronomia y Astrofisica (1975), pp. 211–217, Univ. de la Laguna, Spain.

    Google Scholar 

  27. Smale, S. Topology and mechanics I,Inventiones Math. 10 (1970), 305–331.

    Article  MATH  MathSciNet  Google Scholar 

  28. Smale, S. Topology and mechanics II,Inventiones Math. 11 (1970), 45–64.

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, Q. The global solution of the/V-body problem,Celestial Mech. 50(1991), 73–88.

    Article  MATH  Google Scholar 

  30. Wintner, A.The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton, N.J., 1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Diacu.

Additional information

To the memory of Aristide Halanay (1924–1997) of the University of Bucharest, founding editor of theJournal of Differential Equations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diacu, F. A century-long loop. The Mathematical Intelligencer 22, 19–25 (2000). https://doi.org/10.1007/BF03025370

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03025370

Keywords

Navigation