Skip to main content

Victor kac and robert moody: their paths to kac-moody lie algebras

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Bruce N. Allison, Stephen Berman, Yun Gao, and Arturo Pianzola,A Characterization of Affine Kac-Moody Lie Algebras, Communications in Mathematical Physics,185 (1997), 671–688.

    Article  MATH  MathSciNet  Google Scholar 

  2. [2]

    Georgia Benkart,A Kac-Moody Bibliography and Some Related References, Canadian Mathematical Society Conference Proceedings, vol. 5 (1986), 111–135.

    MathSciNet  Google Scholar 

  3. [3]

    Stephen Berman,Isomorphisms and Automorphisms of Universal Heffalump Lie Algebras, Proceedings of the American Mathematical Society65 (1977), 29–34.

    Article  MATH  MathSciNet  Google Scholar 

  4. [4]

    Armand Borel,Some Recollections of Harish-Chandra, Current Science65 (1993), 919–921.

    MathSciNet  Google Scholar 

  5. [5]

    Armand Borel,The Work of Chevalley in Lie Groups and Algebraic Groups, Proceedings of the Hyderabad Conference on Algebraic Groups, ed. S. Ramanan, Madras: Manoj Prakashan, 1991, 1–23.

    Google Scholar 

  6. [6]

    Élie Cartan,Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bulletin de la Société mathématique de France41 (1913), 53–96.

    MATH  MathSciNet  Google Scholar 

  7. [7]

    Élie Cartan,Les groupes réels simples, finis et continus, Annales scientifiques de l’École normale supérieure31 (1914), 263–355.

    MathSciNet  Google Scholar 

  8. [8]

    Élie Cartan,Première thèse: Sur la structure des groupes de transformations finis et continus, Paris: Nony, 1894.

    Google Scholar 

  9. [9]

    Arthur Cayley,On Jacobi’s Elliptic Functions, in Reply to the Rev. B. Bronwin; and on Quaternions, Philosophical Magazine26 (1845), 208–211.

    Google Scholar 

  10. [10]

    Claude Chevalley,Sur la classification des algèbres de Lie simples et de leurs représentations, Comptes rendus de l’Académie des Sciences de Paris227 (1948), 1136–1138.

    MATH  MathSciNet  Google Scholar 

  11. [11]

    Claude Chevalley,Sur les représentations des algèbres de Lie simples, Comptes rendus de l’Académie des Sciences de Paris227 (1948), 1197.

    MATH  MathSciNet  Google Scholar 

  12. [12]

    H. S. M. Coxeter and W. O. J. Moser,Generators and Relations for Discrete Groups, 2d ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 14, New York: Springer-Verlag, 1965.

    Google Scholar 

  13. [13]

    H. S. M. Coxeter,Regular Polytopes, 2d ed., New York: Macmillan, 1963.

    MATH  Google Scholar 

  14. [14]

    Louise Dolan,The Beacon of Kac-Moody Symmetry for Physics, Notices of the American Mathematical Society42 (Dec. 1995), 1489–1495.

    MATH  MathSciNet  Google Scholar 

  15. [15]

    Hans Freudenthal and H. de Vries,Linear Lie Groups, New York and London: Academic Press, Inc., 1969.

    MATH  Google Scholar 

  16. [16]

    Howard Garland and James Lepowsky,Lie Algebra Homology and the Macdonald-Kac Formulas, Inventiones Mathematicae34 (1976), 37–76.

    Article  MATH  MathSciNet  Google Scholar 

  17. [17]

    I. M. Gelfand and A. A. Kirillov,Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Institut des Hautes Études Scientifiques, Publications mathématiques,31 (1966), 5–19.

    Article  MathSciNet  Google Scholar 

  18. [18]

    Roe Goodman and Nolan R. Wallach,Representations and Invariants of the Classical Groups, Encyclopedia of Mathematics and Its Applications, vol. 68, Cambridge: University Press, 1998.

    Google Scholar 

  19. [19]

    Victor Guillemin and Shlomo Sternberg,An Algebraic Model of Transitive Differential Geometry, Bulletin of the American Mathematical Society70 (1964), 16–47.

    Article  MATH  MathSciNet  Google Scholar 

  20. [20]

    Harish-Chandra,On Some Applications of the Universal Enveloping Algebra of a Semisimple Lie Algebra, Transactions of the American Mathematical Society70 (1951), 28–99.

    Article  MATH  MathSciNet  Google Scholar 

  21. [21]

    Thomas Hawkins,Wilhelm Killing and the Structure of Lie Algebras, Archive for History of Exact Sciences23 (1982), 127–192.

    Article  MathSciNet  Google Scholar 

  22. [22]

    Sigurdur Helgason,Differential Geometry, Lie Groups, and Symmetric Spaces, New York: Academic Press, Inc., 1978.

    MATH  Google Scholar 

  23. [23]

    Rebecca Herb,Harish-Chandra and His Work, Bulletin of the American Mathematical Society [2]25 (1991), 1–17.

    MATH  MathSciNet  Google Scholar 

  24. [24]

    James E. Humphreys,Introduction to Lie Algebras and Representation Theory, New York: Springer-Verlag, 1972.

    Book  MATH  Google Scholar 

  25. [25]

    Nathan Jacobson,Lie Algebras, New York: John Wiley & Sons, 1962.

    MATH  Google Scholar 

  26. [26]

    Victor G. Kac,Automorphisms of Finite Order of Semisimple Lie Algebras, Functional Analysis and Its Applications3 (1969), 252–254.

    MATH  Google Scholar 

  27. [27]

    Victor G. Kac, Correspondence to the authors 10 March, 2000.

  28. [28]

    Victor G. Kac,Graduated Lie Algebras and Symmetric Spaces, Functional Analysis and Its Applications2 (1968), 182–183.

    MATH  Google Scholar 

  29. [29]

    Victor G. Kac,Infinite-dimensional Lie Algebras and Dedekind’s η- Function, Functional Analysis and Its Applications8 (1974), 68–70.

    MATH  Google Scholar 

  30. [30]

    Victor G. Kac,Infinite Dimensional Lie Algebras, 3d ed., Cambridge: University Press, 1990.

    Book  MATH  Google Scholar 

  31. [31]

    Victor G. Kac,Simple Graduated Lie Algebras of Finite Growth, Functional Analysis and Its Applications1 (1967), 328–329.

    Google Scholar 

  32. [32]

    Victor G. Kac,Simple Irreducible Graded Lie Algebras of Finite Growth, Math. USSR-lzvestiya2 (1968), 1271–1311.

    Article  Google Scholar 

  33. [33]

    Victor G. Kac,Some Properties of Contragredient Lie Algebras (in Russian), Trudy MIFM (1969), 48–60.

  34. [34]

    I. L. Kantor,Simple Graded Infinite-Dimensional Lie Algebras, Soviet Mathematics-Doklady9 (1968), 409–412.

    MATH  Google Scholar 

  35. [35]

    Anthony W. Knapp,Lie Groups: Beyond an Introduction, Boston/ Basel/Berlin: Birkhäuser, 1996.

    Book  MATH  Google Scholar 

  36. [36]

    Robert P. Langlands,Harish-Chandra, Biographical Memoirs of Fellows of the Royal Society31 (1985), 197–225.

    Article  Google Scholar 

  37. [37]

    Ian G. Macdonald,Affine Root Systems and Dedekind’s η-Function, Inventiones Mathematicae15 (1972), 91–143.

    Article  MATH  MathSciNet  Google Scholar 

  38. [38]

    Robert V. Moody, Correspondence with the authors 15 February, 2000.

  39. [39]

    Robert V. Moody,Euclidean Lie Algebras, Canadian Journal of Mathematics21 (1969), 1432–1454.

    Article  MATH  MathSciNet  Google Scholar 

  40. [40]

    Robert V. Moody,Lie Algebras Associated to Generalized Cartan Matrices, Bulletin of the American Mathematical Society,73 (1967), 217–221.

    Article  MATH  MathSciNet  Google Scholar 

  41. [41]

    Robert V. Moody,Macdonald Identities and Euclidean Lie Algebras, Proceedings of the American Mathematical Society48 (1975), 43–52.

    Article  MATH  MathSciNet  Google Scholar 

  42. [42]

    Robert V. Moody,A New Class of Lie Algebras, Journal of Algebra10 (1968), 211–230.

    Article  MathSciNet  Google Scholar 

  43. [43]

    Robert V. Moody,Simple Quotients of Euclidean Lie Algebras, Canadian Journal of Mathematics22 (1970), 839–846.

    Article  MATH  MathSciNet  Google Scholar 

  44. [44]

    Robert V. Moody,Wigner Medal Acceptance Speech, 1994, unpublished.

  45. [45]

    Robert V. Moody and Arturo Pianzola,Lie Algebras with Triangular Decompositions, New York: John Wiley and Sons, Inc., 1995.

    MATH  Google Scholar 

  46. [46]

    Jean-Pierre Serre,Algèbres de Lie semi-simples complexes, New York: W. A. Benjamin, Inc., 1966.

    MATH  Google Scholar 

  47. [47]

    I. M. Singer and Shlomo Sternberg,On the Infinite Groups of Lie and Cartan, Journal d’analyse mathématique15 (1965), 1–114.

    Article  MATH  MathSciNet  Google Scholar 

  48. [48]

    Ernst Steinitz,Algebraische Theorie der Körper, Journal für die reine und angewandte Mathematik116 (1910), 1–132.

    Google Scholar 

  49. [49]

    Baertel L. van der Waerden,Die Kassifikation der einfachen Lieschen Gruppen, Mathematische Zeitschrift37 (1933), 446–462.

    Article  MathSciNet  Google Scholar 

  50. [50]

    V. S. Varadarajan,Harish-Chandra and His Mathematical Work, Current Science65 (1993), 918–919.

    MathSciNet  Google Scholar 

  51. [51]

    Hermann Weyl,Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen, Teil 3, Mathematische Zeitschrift24 (1926), 377–395.

    Article  MathSciNet  Google Scholar 

  52. [52]

    Ernst Witt,Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Hamburger Abhandlungen14 (1941), 289–322.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Stephen Berman or Karen Hunger Parshall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berman, S., Parshall, K.H. Victor kac and robert moody: their paths to kac-moody lie algebras. The Mathematical Intelligencer 24, 50–60 (2002). https://doi.org/10.1007/BF03025312

Download citation

Keywords

  • Weyl Group
  • Dynkin Diagram
  • Vertex Operator Algebra
  • Cartan Matrice
  • Ican Mathematical Society