Skip to main content

Mathematical problems for the next century

This is a preview of subscription content, access via your institution.

References

  1. Abraham, R. and Marsden, J. (1978).Foundations of Mechanics. Addison-Wesley Publishing Co., Reading, Mass.

    MATH  Google Scholar 

  2. Babin, A.V. and Vishik, M.I. (1983). Attractors of partial differential evolution equations and their dimension.Russian Math. Surveys 38, 151- 213.

    Article  MATH  MathSciNet  Google Scholar 

  3. Barvinok, A. and Vershik, A. (1993). Polynomial-time, computable approximation of families of semi-algebraic sets and combinatorial complexity.Amer. Math. Soc. Trans. 155, 1–17.

    MATH  Google Scholar 

  4. Bass, H., Connell, E., and Wright, D. (1982). The Jacobian conjecture: reduction on degree and formal expansion of the inverse.Bull. Amer. Math. Soc. (2) 7, 287–330.

    Article  MATH  MathSciNet  Google Scholar 

  5. BCSS: Blum, L, Cucker, F., Shub, M., and Smale, S. (1997).Complexity and Real Computation, Springer-Verlag.

  6. Blum, L, Shub, M., and Smale, S. (1989). On a theory of computation and complexity over the real numbers: NP-completness, recursive functions and universal machines.Bulletin of the Amer. Math. Soc. (2)21, 1–46.

    Article  MathSciNet  Google Scholar 

  7. Blum, L. and Smale, S. (1993). The Gödel incompleteness theorem and decidability over a ring. Pages 321-339 in M. Hirsch, J. Marsden, and M. Shub (editors),From Topology to Computation: Proceedings of the Smalefest, Springer-Verlag.

  8. Browder, F. (ed.), (1976).Mathematical Developments Arising from Hilbert Problems, American Mathematical Society, Providence, Rl.

    MATH  Google Scholar 

  9. Brownawell, W. (1987). Bounds for the degrees in the Nullstellensatz.Annals of Math. 126, 577–591.

    Article  MATH  MathSciNet  Google Scholar 

  10. Chern, S. and Smale, S. (eds.) (1970).Proceedings of the Symposium on Pure Mathematics, vol. XIV, American Mathematical Society, Providence, Rl.

    Google Scholar 

  11. Chorin, A., and Marsden, J. (1993).A Mathematical Introduction to Fluid Mechanics, 3rd edition, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  12. Chorin, A., Marsden, J., and Smale, S. (1977). Turbulence Seminar, Berkeley 1976-77,Lecture Notes in Math.615, Springer-Verlag, New York.

    Google Scholar 

  13. Cucker, F., Koiran, P., and Smale, S. (1997). A polynomial time algorithm for Diophantine equations in one variable. To appear.

  14. Debreu, G. (1959).Theory of Value, John Wiley & Sons, New York.

    MATH  Google Scholar 

  15. Dulac, H. (1923). Sur les cycles limites.Bull. Soc. Math. France 51, 45–188.

    MATH  MathSciNet  Google Scholar 

  16. Écalle, J. (1992).Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac. Hermann, Paris,

  17. van den Essen, A. (1997). Polynomial automorphisms and the Jacobian conjecture, inAlgèbre non commutative, groupes quantiques et invariants, septième contact Franco-Belge, Reims, Juin 1995, eds. J. Alev and G. Cauchon, Société mathématique de France, Paris.

    Google Scholar 

  18. Freedman, M. (1982). The topology of 4-manifolds.J. Diff. Geom. 17, 357–454.

    MATH  Google Scholar 

  19. Garey, M. and Johnson, D. (1979).Computers and Intractability, Freeman, San Francisco.

    MATH  Google Scholar 

  20. Grötschel, M., Lovâsz, L., and Schrijver, A. (1993).Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  21. Guckenheimer, J. and Holmes, P. (1990).Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, third printing, Springer-Verlag, New York.

    Google Scholar 

  22. Guckenheimer, J. and Williams, R.F. (1979). Structural stability of Lorenz attractors.Publ. Math. IHES 50, 59–72.

    Article  MATH  MathSciNet  Google Scholar 

  23. Hayashi, S. (1997). Connecting invariant manifolds and the solution of the C1-stability conjecture and ft-stability conjecture for flows.Annals of Math. 145, 81–137.

    Article  MATH  Google Scholar 

  24. Hirsch, M. and Smale, S. (1974).Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York,

    MATH  Google Scholar 

  25. llyashenko, J. (1985). Dulac’s memoir “On limit cycles” and related problems of the local theory of differential equations.Russian Math. Surveys VHO, 1–49.

    Article  Google Scholar 

  26. llyashenko, Yu. (1991).Finiteness Theorems for Limit Cycles, American Mathematical Society, Providence, Rl.

    Google Scholar 

  27. llyashenko, Yu. and Yakovenko, S. (1995). Concerning the Hilbert 16th problem.AMS Translations, series 2, vol.165, AMS, Providence, Rl.

    Google Scholar 

  28. Jakobson, M. (1971). On smooth mappings of the circle onto itself.Math. USSR Sb. 14, 161–185.

    Article  Google Scholar 

  29. Kuijlaars, A.B.J. and Saff, E.B. (1997). Asymptotics for minimal discrete energy on the sphere.Trans. Amer. Math. Soc, to appear.

  30. Kuz’mina, R., (1977). An upper bound for the number of central configurations in the plane n-body problem.Sov. Math. Dok. 18,818–821.

    MATH  Google Scholar 

  31. Lang, S. (1991).Number Theory III, vol. 60 ofEncyclopaedia of Mathematical Sciences, Springer-Verlag, New York.

    Google Scholar 

  32. Linz, A., de Melo, W., and Pugh, C. (1977), in Geometry and Topology,Lecture Notes in Math.597, Springer-Verlag, New York.

    Google Scholar 

  33. Liu, V. (1992). An example of instability for the Navier-Stokes equations on the 2-dimensional torus.Commun. PDE 17, 1995–2012.

    Article  MATH  Google Scholar 

  34. Lloyd, N.G. and Lynch, S. (1988). Small amplitude limit cycles of certain Lienard systems.Proceedings Roy. Soc. London 418, 199–208.

    Article  MATH  MathSciNet  Google Scholar 

  35. Lorenz, E. (1963). Deterministic non-periodic flow.J. Atmosph. Sci. 20,c 130–141.

    Article  Google Scholar 

  36. Manders, K.L. and Adleman, L. (1978). NP-complete decision problems for binary quadratics.J. Comput. System Sci. 16, 168–184.

    Article  MATH  MathSciNet  Google Scholar 

  37. McMullen, C. (1994). Frontiers in complex dynamics.Bull. Amer. Math. Soc. (2)31, 155–172.

    Article  MATH  MathSciNet  Google Scholar 

  38. de Melo, W. and van Strien, S. (1993).One-Dimensional Dynamics. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  39. Palis, J. and Yoccoz, J.C. (1989). (1) Rigidity of centralizers of diffeo- morphisms.Ann. Scient Ecole Normale Sup. 22, 81–98; (2) Centralizer of Anosov diffeomorphisms.Ann. Scient. Ecole Normale Sup. 22, 99-108.

    MATH  MathSciNet  Google Scholar 

  40. Palmore, J. (1976). Measure of degenerative relative equilibria. I.Annals of Math. 104, 421–429.

    Article  MATH  MathSciNet  Google Scholar 

  41. Petrovskπ, I.G. and Landis, E.M. (1957). On the number of limit cycles of the equationdy/dx = Pfc,y)/Q(x,y), whereP and Q are polynomials.Mat. Sb. N.S. 43 (85), 149–168 (in Russian), and (1960)Amer. Math. Soc. Transi. (2) 14, 181-200.

    MathSciNet  Google Scholar 

  42. Petrovskif, I.G. and Landis, E.M. (1959). Corrections to the articles “On the number of limit cycles of the equationdy/dx =P(x,y)/Q(>c,y), whereP and Q are polynomials.“Mat. Sb. N.S. 48 (90), 255–263 (in Russian)

    Google Scholar 

  43. Penrose, R. (1991).The Emperor’s New Mind, Penguin Books.

  44. Poincaré, H. (1953).Oeuvres, VI. Gauthier-Villars, Paris. Deuxième Complément à L’Analysis Situs.

  45. Peixoto, M. (1962). Structural stability on two-dimensional manifolds.Topology 1, 101–120.

    Article  MATH  MathSciNet  Google Scholar 

  46. Pugh, C. (1967). An improved closing lemma and a general density theorem.Amer. J. Math. 89, 1010–1022.

    Article  MATH  MathSciNet  Google Scholar 

  47. Pugh, C. and Robinson, C. (1983). The C1 closing lemma including Hamiltonians.Ergod. Theory Dynam. Systems 3, 261–313.

    Article  MATH  MathSciNet  Google Scholar 

  48. Rakhmanov, E.A., Saff, E.B., and Zhou, Y.M. (1994). Minimal discrete energy on the sphere.Math. Res. Lett. 1, 647–662.

    Article  MATH  MathSciNet  Google Scholar 

  49. Robinson, C. (1989). Homoclinic bifurcation to a transitive attractor of Lorenz type.Non-linearity 2, 495–518.

    MATH  Google Scholar 

  50. Rudin, W. (1995). Injective polynomial maps are automorphisms.Amer. Math. Monthly 102, 540–543.

    Article  MATH  MathSciNet  Google Scholar 

  51. Ruelle, D. and Takens, F. (1971). On the nature of turbulence.Commun. Math. Phys. 20, 167–192.

    Article  MATH  MathSciNet  Google Scholar 

  52. Samuelson, P. (1971).Foundations of Economic Analysis, Atheneum, New York.

    Google Scholar 

  53. Saff, E. and Kuijlaars, A. (1997). Distributing many points on a sphere.Mathematical Intelligencer 10, 5–11.

    Article  MathSciNet  Google Scholar 

  54. Schrijver, A. (1986).Theory of Linear and Integer Programming, John Wiley & Sons.

  55. Shi, S. (1982). On limit cycles of plane quadratic systems.Sei. Sin. 25, 41–50.

    MATH  Google Scholar 

  56. Shub, M. (1970). Appendix to Smale’s paper: Diagrams and relative equilibria in manifolds, Amsterdam, 1970.Lecture Notes in Math. 197, Springer-Verlag, New York.

    Google Scholar 

  57. Shub, M. and Smale, S. (1993). Complexity of Bezout’s theorem, III: condition number and packing.J. of Complexity 9, 4–14.

    Article  MATH  MathSciNet  Google Scholar 

  58. Shub, M. and Smale, S. (1994). Complexity of Bezout’s theorem, V: polynomial time.Theoret. Comp. Sci. 133, 141–164.

    Article  MATH  MathSciNet  Google Scholar 

  59. Shub, M. and Smale, S. (1995). On the intractibility of Hubert’s Nullstellensatz and an algebraic version of “P = NP“,Duke Math. J. 81, 47–54.

    Article  MATH  MathSciNet  Google Scholar 

  60. Smale, S. (1963). Dynamical systems and the topological conjugacy problem for diffeomorphisms, pages 490-496 in:Proceedings of the International Congress of Mathematicians, Inst. Mittag-Leffler, Sweden, 1962. (V. Stenström, ed.)

  61. Smale, S. (1963). A survey of some recent developments in differential topology.Bull. Amer. Math. Soc. 69, 131–146.

    Article  MathSciNet  Google Scholar 

  62. Smale, S. (1967). Differentiable dynamical systems.Bull. Amer. Math. Soc. 73, 747–817.

    Article  MATH  MathSciNet  Google Scholar 

  63. Smale, S. (1970). Topology and mechanics, I and II.Invent. Math. 10, 305–331 andInvent Math. 11, 45-64.

    Article  MATH  MathSciNet  Google Scholar 

  64. Smale, S. (1976). Dynamics in general equilibrium theory.Amer. Economic Review 66, 288–294.

    Google Scholar 

  65. Smale, S. (1980).Mathematics of Time, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  66. Smale, S. (1981). Global analysis and economics, pages 331-370 inHandbook of Mathematical Economics 1, editors K.J. Arrow and M.D. Intrilligator. North-Holland, Amsterdam.

    Google Scholar 

  67. Smale, S. (1990). The story of the higher-dimensional Poincaré conjecture.Mathematical Intelligencer 12, no. 2, 40–51. Also in M. Hirsch, J. Marsden, and M. Shub, editors,From Topology to Computation: Proceedings of the Smalefest, 281-301 (1992).

    Article  MathSciNet  Google Scholar 

  68. Smale, S. (1991). Dynamics retrospective: great problems, attempts that failed.Physica D 51, 267–273.

    Article  MATH  MathSciNet  Google Scholar 

  69. Taubes, G. (July 1987). What happens when Hubris meets Nemesis?Discover.

  70. Temam, R. (1979).Navier-Stokes Equations, revised edition, North- Holland, Amsterdam.

    MATH  Google Scholar 

  71. Traub, J. and Wozniakowski, H. (1982). Complexity of linear programming.Oper. Res. Letts. 1, 59–62.

    Article  MATH  MathSciNet  Google Scholar 

  72. Tsuji, M. (1959).Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo.

    MATH  Google Scholar 

  73. Wen, L. and Xia, Z. (1997). A simpler proof of the Cp1 connecting lemma. To appear.

  74. Williams, R. (1979). The structure of Lorenz attractors.Publ. IHES 50, 101–152.

    Article  Google Scholar 

  75. Wintner, A. (1941).The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton, NJ.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steve Smale.

Additional information

Lecture given on the occasion of Arnold’s 60th birthday at the Fields Institute, Toronto, June 1997.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smale, S. Mathematical problems for the next century. The Mathematical Intelligencer 20, 7–15 (1998). https://doi.org/10.1007/BF03025291

Download citation

Keywords

  • Relative Equilibrium
  • Mathematical Intelligencer
  • Affirmative Answer
  • Riemann Hypothesis
  • Lorenz Attractor