Skip to main content

The first 1,701,936 knots

This is a preview of subscription content, access via your institution.

References

  1. [AB]

    J.W. Alexander and G.B. Briggs, On types of knotted curves,Ann. Math. 28 (1927), 562–586.

    Article  MATH  MathSciNet  Google Scholar 

  2. [Am]

    B. Arnold, M. Au, C. Candy, K. Erdener, J. Fan, R. Flynn, J. Hoste, R.J. Muir, and D. Wu, Tabulating alternating knots through 14 crossings,J. Knot Theory Ramifications 3(4) (1994), 433–437.

    Article  MATH  MathSciNet  Google Scholar 

  3. [BS]

    F. Bonahon and L. Siebenmann, The classification of algebraic links, unpublished manuscript.

  4. [BZ]

    G. Burde and H. Zieschang, Knots, New York: de Gruyter (1985).

    MATH  Google Scholar 

  5. [Cau]

    A. Caudron, Classification des noeuds et des enlacements, Prepublication Math. d’Orsay, Orsay, France: Université Paris- Sud (1980).

    Google Scholar 

  6. [Con]

    J.H. Conway, An enumeration of knots and links,Computational Problems in Abstract Algebra (Leech, ed.), New York: Pergamon Press (1970), 329–358.

    Google Scholar 

  7. [Deh]

    M. Dehn, Die beiden Kleeblattschlingen,Math. Ann. 75 (1914), 402–413.

    Article  MathSciNet  Google Scholar 

  8. [DH]

    H. Doll and J. Hoste, A tabulation of oriented links,Math. Computat. 57(196) (1991), 747–761.

    Article  MATH  MathSciNet  Google Scholar 

  9. [DT]

    C.H. Dowker and M.B. Thistlethwaite, Classification of knot projections,Topol. Appl. 16 (1983), 19–31.

    Article  MATH  MathSciNet  Google Scholar 

  10. [EP]

    D.B.A. Epstein and R.C. Penner, Euclidean decompositions of noncompact hyperbolic manifolds,J. Diff. Geom. 27 (1988), 67–80.

    MATH  MathSciNet  Google Scholar 

  11. [ES]

    C. Ernst and D.W. Sumners, The growth of the number of prime knots,Math. Proc. Camb. Phil. Soc. 102 (1987), 303–315.

    Article  MATH  MathSciNet  Google Scholar 

  12. [GL]

    C. Gordon and J. Luecke, Knots are determined by their complements,J. Am. Math. Soc. 2 (1989), 371–415.

    Article  MATH  MathSciNet  Google Scholar 

  13. [Hak]

    W. Haken, Theorie der Normalflächen,Acta Math. 105 (1961), 245–375.

    Article  MATH  MathSciNet  Google Scholar 

  14. [Has1]

    M.G. Haseman, On knots, with a census of the amphicheirals with twelve crossings,Trans. Roy. Soc. Edinburgh 52 (1917), 235–255.

    Article  Google Scholar 

  15. [Has2]

    M.G. Haseman, Amphicheiral knots,Trans. Roy. Soc. Edinburgh 52 (1918), 597–602.

    Article  Google Scholar 

  16. [Hem]

    G. Hemion, On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds,Acta Math. 142 (1979), 123–155.

    Article  MATH  MathSciNet  Google Scholar 

  17. [Kau]

    L.H. Kauffman, State Models and the Jones Polynomial,Topology 26 (1987), 395–407.

    Article  MATH  MathSciNet  Google Scholar 

  18. [Kir1]

    T.P. Kirkman, The enumeration, description and construction of knots of fewer than ten crossings,Trans. Roy. Soc. Edinburgh 32 (1885), 281–309.

    Article  MATH  Google Scholar 

  19. [Kir2]

    T.P. Kirkman, The 634 unifilar knots of ten crossings enumerated and defined,Trans. Roy. Soc. Edinburgh 32 (1885), 483–506.

    Article  MATH  Google Scholar 

  20. [KS]

    K. Kodama and M. Sakuma, Symmetry groups of prime knots up to 10 crossings, inKnots 90, Proceedings of the International Conference on Knot Theory and Related Topics, Osaka, Japan, 1990 (A. Kawauchi, ed.), Berlin: de Gruyter (1992), 323–340.

    Google Scholar 

  21. [Lis]

    J.B. Listing, Vorstudien zur Topologie, Göttingen Studien, University of Göttingen, Germany (1848).

  22. [Lit 1]

    C.N. Little, On knots, with a census of order ten,Trans. Connecticut Acad. Sci. 18 (1885), 374–378.

    Google Scholar 

  23. [Lit2]

    C.N. Little, Non alternate ± knots of orders eight and nine,Trans. Royal Soc. Edinburgh 35 (1889), 663–664.

    Article  MATH  Google Scholar 

  24. [Lit3]

    C.N. Little, Alternate ± knots of order 11,Trans. Roy. Soc. Edinburgh 36 (1890), 253–255.

    Article  MATH  Google Scholar 

  25. [Lit4]

    C.N. Little, Non-alternate ± knots,Trans. Royal Soc. Edinburgh 39 (1900), 771–778.

    Article  MATH  Google Scholar 

  26. [Lit5]

    C.N. Little, Knots, with a census for order ten, Ph.D. Thesis, Yale University (1885).

  27. [Men]

    W. Menasco, Closed incompressible surfaces in alternating knot and link complements,Topology 23(1) (1984), 37–44.

    Article  MATH  MathSciNet  Google Scholar 

  28. [MP]

    K. Murasugi and J. Przytycki, The skein polynomial of a planar star product of two links,Math. Proc. Camb. Phil. Soc. 106(2) (1989), 273–276.

    Article  MATH  MathSciNet  Google Scholar 

  29. [MT]

    W. Menasco and M.B. Thistlethwaite, The classification of alternating links,Ann. Math. 138 (1993), 113–171.

    Article  MATH  MathSciNet  Google Scholar 

  30. [Mur1]

    K. Murasugi, The Jones polynomial and classical conjectures in knot theory,Topology 26 (1987), 187–194.

    Article  MATH  MathSciNet  Google Scholar 

  31. [Mur2]

    K. Murasugi, Jones polynomials and classical conjectures in knot theory II,Math. Proc. Camb. Phil. Soc. 102 (1987), 317–318.

    Article  MATH  MathSciNet  Google Scholar 

  32. [Perl]

    K. Perko, On the classification of knots,Proc. Am. Math. Soc. 46 (1974), 262–266.

    Article  MathSciNet  Google Scholar 

  33. [Per2]

    K. Perko, Invariants of 11-crossing knots, Prepublications Math. d’Orsay (1980)

  34. [Per3]

    K. Perko, Primality of certain knots,Topology Proc 7 (1982), 109–118.

    MATH  MathSciNet  Google Scholar 

  35. [Pra]

    G. Prasad, Strong rigidity of Q-rank 1 lattices,Invent Math. 21 (1973), 255–286.

    Article  MATH  MathSciNet  Google Scholar 

  36. [Rei]

    K. Reidemeister, Knotentheorie, Berlin: Springer-Verlag, 1932.

    Google Scholar 

  37. [Ril]

    R. Riley, An elliptical path from parabolic representations to hyperbolic structures, inTopology of Low-Dimensional Manifolds, Proceedings, Sussex 1977 (R. Fenn, ed.), Springer Lecture Notes in Math. vol. 722, New York: Springer-Verlag (1979), 99–133.

    Google Scholar 

  38. [SW]

    M. Sakuma and J. Weeks, The generalized tilt formula,Geometriae Dedicata 55 (1995), 115–123.

    Article  MATH  MathSciNet  Google Scholar 

  39. [Sch]

    O. Schreier, Über die GruppenA aBb = 1,Abh. Math. Sem. Univ. Hamburg 3 (1924), 167–169.

    Article  MATH  MathSciNet  Google Scholar 

  40. [ST]

    C. Sundberg and M. Thistlethwaite, The rate of growth of the number of prime alternating links and tangles,Pacific J. Math. 182 no.2 (1998), 329–358.

    Article  MATH  MathSciNet  Google Scholar 

  41. [Tai]

    P.G. Tait, On knots I, II, III,Scientific Papers, Vol. I, Cambridge: Cambridge University Press (1898), 273–347.

    Google Scholar 

  42. [Thi1]

    M.B. Thistlethwaite, Knot tabulations and related topjcs,Aspects of Topology in Memory of Hugh Dowker 1912–1982 (James and Kronheimer, eds.), Cambridge, England: Cambridge Press, London Math. Soc. Lecture Note Series 93, 1–76.

  43. [Thi2]

    M.B. Thistlethwaite, A spanning tree expansion of the Jones polynomial,Topology 26(3) (1987), 297–309.

    Article  MATH  MathSciNet  Google Scholar 

  44. [Thi3]

    M.B. Thistlethwaite, Kauffman’s polynomial and alternating links,Topology 27(3) (1988), 311–318.

    Article  MATH  MathSciNet  Google Scholar 

  45. [Thi4]

    M.B. Thistlethwaite, On the structure and paucity of alternating tangles and links, preprint.

  46. [Tro]

    H.F. Trotter, Noninvertible knots exist,Topology 2 (1964), 275–280.

    Article  MathSciNet  Google Scholar 

  47. [Wks]

    J. Weeks, Convex hulls and isometries of cusped hyperbolic 3-manifolds,Topol. Appl. 52 (1993), 127–149.

    Article  MATH  MathSciNet  Google Scholar 

  48. [Wei]

    D.J.A. Welsh, On the number of knots and links,Colloq Math. Soc. J. Bolyai 60 (1991), 713–718.

    MathSciNet  Google Scholar 

  49. [Wil]

    R.F. Williams, The braid index of an algebraic link,Braids (Santa Cruz, CA, 1986), Contemporary Mathematics Series Vol. 78, Providence, Rl: American Mathematical Society (1988).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jim Hoste, Morwen Thistlethwaite or Jeff Weeks.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoste, J., Thistlethwaite, M. & Weeks, J. The first 1,701,936 knots. The Mathematical Intelligencer 20, 33–48 (1998). https://doi.org/10.1007/BF03025227

Download citation

Keywords

  • Symmetry Group
  • Encode Scheme
  • Mathematical Intelligencer
  • Jones Polynomial
  • Canonical Decomposition