Skip to main content
Log in

Eisenstein’s footnote

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

References

  • Abel, N. H. [1826] Démonstration de ľimpossibilité de la résolution algébrique des équations générales qui passent le quatrième degré.J. Reine Angew. Math. 1, 65–84.Oeuvres Complètes 1, 66–87.

    Article  MATH  Google Scholar 

  • Bring, E. S. [1786] Meletemata quaedam mathematica circa transformationem aequationum algebraicarum. Lund University, Promotionschrift.

  • Dedekind, R. [1877] Sur la théorie des nombres entiers algébriques, III.Bull. Sci. Math. Astron., ser. 2, 1, 144–164.

    Google Scholar 

  • Descartes, R. [1637]La Géométrie. English translation:The Geometry, Dover, New York, 1954.

    Google Scholar 

  • Eisenstein, F. G. M. [1844] Allgemeine Auflösung der Gleichungen von den ersten vier Graden.J. Reine Angew. Math. 27, 81–83.Mathematische Werke I, 7–9.

    Article  MATH  Google Scholar 

  • [1844’] Entwicklung von αα α :.J. Reine Angew. Math. 28, 49–52.Mathematische Werke I, 122–125.

    Google Scholar 

  • [1895] Eine Autobiographie von Gotthold Eisenstein.Mathematische Werke II, 879–904.

    Google Scholar 

  • Galois, E. [1831] Mémoire sur les conditions de résolubilité des équations par radicaux.Écrits Mém. Math., 43–71.

  • Hamilton, W. R. [1837] Inquiry into the validity of a method recently proposed by George B. Jerrard, Esq., for transforming and resolving equations of elevated degree.British Assoc. Report, 295–348.Mathematical Papers III, 481–516.

    Google Scholar 

  • [1837’] On the argument of Abel, respecting the possibility of expressing a root of any general equation above the fourth degree, by any finite combination of radicals and rational functions.Trans. Roy. Irish Acad. 17, 171–259.Mathematical Papers III, 517–569.

  • Harley, R. [1864] A contribution to the history of the problem of the reduction of the general equation of fifth degree to a trinomial form.Quart. J. Pure Appl. Math. 6, 38–47.

    Google Scholar 

  • Hermite, C. [1858] Sur la résolution de ľéquation du cinquième degré.Comptes Rend. Acad. Sci. Paris 46, 508–515.Oeuvres, Vol. 2, 5–12.

    Google Scholar 

  • Jerrard, G. B. [1834]Mathematical Researches, Vol. 2, William Strong, Bristol.

    Google Scholar 

  • Klein, F. [1884]Vorlesungen über das Icosaeder und die Auflösung der Gleichungen vom fünften Grade. English Translation:The Icosahedron and the Solution of Equations of the Fifth Degree. Dover, New York, 1956.

    Google Scholar 

  • Lambert, J. H. [1758] Observaciones variae in Mathesin puram.Acta Helvetica, vol. 3,128–168, §38.Opera Mathematica, vol. 1, 16–51. Orell Füssli Verlag, Zürich 1946.

    Google Scholar 

  • Lang, S. [1965]Algebra. Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Newton, J. [1665–66] Researches in the theory of equations.Math. Papers 1, 517–539.

    Google Scholar 

  • Patterson, S. J. [1990] Eisenstein and the quintic equation.Historia Math. 17, 132–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Serre, J.-P. [1980] Extensions Icosaédriques.Sem. Th. Nombres de Bordeaux, Année 1979–1980,exposé 19.Collected Papers III, 550–554.

    Google Scholar 

  • Stevin, S. [1585]Ľarithmétique. Abridgement in:Principal Works of Simon Stevin, Vol.IIB, pp. 477–708. C. V. Swets & Zeitlinger, Amsterdam, 1958

    Google Scholar 

  • Tschirnhaus, E. W. [1683] Methodus auferendi omnes terminos intermedios ex data aequatione.Acta Eruditorum II.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stillwell, J. Eisenstein’s footnote. The Mathematical Intelligencer 17, 58–62 (1995). https://doi.org/10.1007/BF03024901

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03024901

Keywords

Navigation