The Mathematical Intelligencer

, Volume 17, Issue 4, pp 68–77 | Cite as


  • Jet Wimp
  • Ivor Grattan-Guinness
  • Mary Beth Ruskai
  • Philip J. Davis
  • Adrian Riskin


Wavelet Packet Multiresolution Analysis Wavelet Theory Multiscale Analysis Orthogonal Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bottazzini, U.,The Higher Calculus, New York: Springer-Verlag (1986).zbMATHGoogle Scholar
  2. Grattan-Guinness, I.,The Development of the Foundations of Mathematical Analysis from Euler to Riemann, Cambridge, MA: M.I.T. Press (1970).zbMATHGoogle Scholar
  3. Grattan-Guinness, I., Not from nowhere. History and philosophy behind mathematical education,International Journal of Mathematical Education in Science and Technology 4 (1973), 421–453.CrossRefMathSciNetGoogle Scholar
  4. Grattan-Guinness, I., Preliminary notes on the historical significance of quantification and of the axioms of choice in the development of mathematical analysis,Historia Mathematica 2 (1975), 475–488.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Grattan-Guinness, I., in collaboration with J.R. Ravetz,Joseph Fourier 1768-1830.A survey of his life and work, based on a critical edition of his monograph on the propagation of heat, presented to the Institut de France in 1807, Cambridge, MA.: M.I.T. Press (1972).Google Scholar


  1. [1]
    P. Auscher, Il n’existe pas de bases ďondelettes régulières dans ľespace de HardyH 2(R), C.R. Acad. Sci. Paris 315 (1992), 769–772.zbMATHMathSciNetGoogle Scholar
  2. [2]
    C. Chui,An Introduction to Wavelets, New York: Academic Press (1992).zbMATHGoogle Scholar
  3. [3]
    I. Daubechies, Orthonormal bases of compactly supported wavelets,Commun. Pure Appl. Math. 41 (1988), 909–996.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    I. Daubechies,Ten Lectures on Wavelets, Philadelphia: SIAM, (1992).zbMATHGoogle Scholar
  5. [5]
    I. Daubechies (ed.),Different Perspectives on Wavelets, Proceedings of Symposia in Applied Mathematics No. 47, Providence, RI: American Mathematical Society (1993).zbMATHGoogle Scholar
  6. [6]
    M. Farge, Transformée en ondelettes continue et application á la turbulence, in Lesondelettes, Paris: Société Mathématique de France (1990).Google Scholar
  7. [7]
    M. Farge, The continuous wavelet transform of twodimensional continuous flows, in [R].Google Scholar
  8. [8]
    A. Grunbaum,Science 257 (1992), 821–822.CrossRefGoogle Scholar
  9. [9]
    Special issue on wavelet transforms and multiresolution signal analysisIEEE Trans. Inform. Theory IT-38 (1992).Google Scholar
  10. [10]
    Special Issue on wavelets and signal processing,IEEE Trans. Signal Proc. SP-41 (1993).Google Scholar
  11. [11]
    G. Kaiser,A Friendly Guide to Wavelets, Cambridge, MA: Birkhauser (1994).zbMATHGoogle Scholar
  12. [12]
    Y. Meyer,Ondelettes, Paris: Hermann (1990).CrossRefGoogle Scholar
  13. [13]
    Y. Meyer,Wavelets and Operators, Cambridge: Cambridge University Press, (1992).zbMATHGoogle Scholar
  14. [14]
    Y. Meyer,Bull. AMS 28 (1993), 350–360.CrossRefGoogle Scholar
  15. [15]
    M.B. Ruskai, et al. (eds.),Wavelets and Their Applications, Boston: Jones and Bartlett (1992).zbMATHGoogle Scholar
  16. [16]
    R.S. Strichartz, How to make wavelets,Am. Math. Monthly 100 (1993), 539–556.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    M. Verterli and J. Kovačevič,Wavelets and Subband Coding Englewood Cliffs, NJ: Prentice-Hall (1995).Google Scholar
  18. [18]
    G.G. Walter,Wavelets and Other Orthogonal Systems with Applications, Boca Raton, FL: CRC Press (1994).zbMATHGoogle Scholar
  19. [19]
    M.V. Wickerhauser,Adapted Wavelet Analysis from Theory to Software, Wellesley: A.K. Peters (1994).zbMATHGoogle Scholar


  1. N. Wiener.Ex-Prodigy: My Childhood and Youth. Simon and Schuster, New York, 1953.Google Scholar
  2. N. Wiener.I am a Mathematician. Doubleday, Garden City, New York. 1956.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1995

Authors and Affiliations

  1. 1.Department of MathematicsDrexel UniversityPhiladelphiaUSA
  2. 2.Middlesex UniversityEnfieldEngland
  3. 3.Department of MathematicsUniversity of MassachusettsLowellUSA
  4. 4.Division of Applied MathematicsBrown UniversityProvidence
  5. 5.Department of MathematicsNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations