The Mathematical Intelligencer

, Volume 17, Issue 1, pp 52–64 | Cite as

Four encounters with sierpińriski’s gasket

  • Ian Stewart
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benoît Mandelbrot,The Fractal Geometry of Nature, San Francisco: Freeman (1977).Google Scholar
  2. 2.
    W. Sierpiński,Oeuvres Choisies (2 vols.), Warsaw: Pańs wo we Wydwnicto Naukowe, (1975).MATHGoogle Scholar
  3. 3.
    Krzysztof Ciesielski, Lost legends of Lvov I: The Scottish Café,Mathematical Intelligencer 9(4) (1987), 36–37.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Krzysztof Ciesielski, Lost legends of Lvov II: Banach’s grave,Mathematical Intelligencer 10(1) (1988), 50–51.CrossRefGoogle Scholar
  5. 5.
    W. Sierpiński, Sur une courbe dont tout point est un point de ramification,Compt. Rendus Acad. Sci. Paris 160 (1915), 302–305.MATHGoogle Scholar
  6. 6.
    W. Sierpiński, On a curve every point of which is a point of ramification,Prace Mat. Fiz. 27 (1916), 77–86 [Polish].MATHGoogle Scholar
  7. 7.
    W. Sierpiński, Sur une nouvelle courbe continue qui remplit toute une aire plane,Bull Int. Acad. Sci. Cracovie A (1912), 462–478.Google Scholar
  8. 8.
    W. Sierpiński, On a Cantorian curve which contains a bijective and continuous image of any given curve,Mat. Sb. 30 (1916), 267–287 [Russian].Google Scholar
  9. 9.
    W. Sierpiński, Un exemple élémentaire ďune fonction croissante qui a presque partout une derivée nulle,Giornale Mat. Battaglini (3) 6 (1916), 314–334.Google Scholar
  10. 10.
    W. Sierpiński, On a reversible function whose image is dense in the plane,Wektor 3 (1914), 289–291 [Polish].Google Scholar
  11. 11.
    Kenneth Falconer,Fractal Geometry, New York: Wiley (1990).MATHGoogle Scholar
  12. 12.
    L. E. Dickson,History of the Theory of Numbers, Vol. 1, New York: Chelsea (1952).Google Scholar
  13. 13.
    P. Hilton and J. Pedersen, Extending the binomial coefficients to preserve symmetry and pattern,Computers Math. Appl. 17 (1989), 89–102; reprinted inSymmetry! — Unifying Human Understanding (I. Hargittai ed.), Oxford: Pergamon Press (1989).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Marta Sved, Divisibility—with visibility,Mathematical Intelligencer 10(2) (1988), 56–64.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ian Stewart, Le lion, le lama et la laitue,Pour la Science 142 (1989), 102–107.Google Scholar
  16. 16.
    Ian Stewart,Game, Set, and Math, Oxford: Basil Blackwell, (1989) [reprint: Harmondsworth: Penguin Books (1991)].Google Scholar
  17. 17.
    G. S. Kazandzidis, Congruences on the binomial coefficients,Bull Soc. Math. Grèce (NS) 9 (1968), 1–12.MATHMathSciNetGoogle Scholar
  18. 18.
    David Singmaster, Notes on binomial coefficients III — Any integer divides almost all binomial coefficients,J. London Math. Soc. (2) 8 (1974), 555–560.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    J. W. L. Glaisher, On the residue with respect to pn+1 of a binomial-theorem coefficient divisible by pn,Quart.J. Pure Appl. Math. 30 (1899), 349–360.MATHGoogle Scholar
  20. 20.
    E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitäsetzen,Reine Angew. Math. 44 (1852), 93–146.CrossRefMATHGoogle Scholar
  21. 21.
    David Singmaster, Notes on binomial coefficients I—A generalization of Lucas’ congruence,J. London Math. Soc. (2) 8 (1974), 545–548.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    A. W. F. Edwards, Patterns and primes in Bernoulli’s triangle,Math. Spectrum 23 (1991), 105–109.Google Scholar
  23. 23.
    Siegfried Rösch, Expedition in Unerforschtes Zahlenland,Neues Universarum 79 (1962), 93–98.Google Scholar
  24. 24.
    Siegfried Rösch, Neues vom Pascal-Dreieck, Bild der Wiss. (Sept. 1965), 758-762.Google Scholar
  25. 25.
    David Singmaster, Notes on binomial coefficients II — The least n such that pe divides an r-nomial coefficient of rank n,J. London Math. Soc. (2) 8 (1974), 549–554.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    David Singmaster, Divisibility of binomial and multinomial coefficients by primes and prime powers,A Collection of Manuscripts Related to the Fibonacci Sequence, 18th Anniversary Volume of the Fibonacci Association (1980), 98–113.Google Scholar
  27. 27.
    N. Claus [= Edouard Lucas] La tour ďHanoï, jeu de calcul,Sci. Nature 1 (1884), 127–128.Google Scholar
  28. 28.
    Ronald L. Graham, Donald E. Knuth, and Oren Patashnik,Concrete Mathematics, New York: Addison-Wesley (1989).MATHGoogle Scholar
  29. 29.
    R. S. Scorer, P. M. Grundy, and C. A. B. Smith, Some binary games,Math. Gaz. 28 (1944), 96–103.CrossRefGoogle Scholar
  30. 30.
    M. C. Er, A general algorithm for finding a shortest path between two n-configurations,Inform. Sci. 42 (1987), 137–141.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Lu Xuemiao, Towers of Hanoi graphs, Int.J. Comput. Math. 19 (1986), 23–38.CrossRefMATHGoogle Scholar
  32. 32.
    D. Wood, The towers of Brahma and Hanoi revisited,J. Recreational Math. 14 (1981-82), 17–24.MATHMathSciNetGoogle Scholar
  33. 33.
    D. Wood, Adjudicating a towers of Hanoi contest,J. Recreational Math. 14 (1981-82), 199–207.Google Scholar
  34. 34.
    F. Klix, J. Neumann, A. Seeber, and H. Sydow, Die algorithmische Beschreibung des Lösungsprinzips einer Denkanforderung, Z.Psychol. 168 (1963), 123–141.Google Scholar
  35. 35.
    H. Sydow, Zur metrischen Erfassung von subjektiven Problemzuständen und zu deren Veränderung im Denkenprozeß I, Z.Psychol. 177 (1970), 145–198.Google Scholar
  36. 36.
    Andreas M. Hinz, The tower of Hanoi,ĽEnseignement Math. 35 (1989), 289–321.MATHMathSciNetGoogle Scholar
  37. 37.
    Andreas M. Hinz, Shortest path between regular states of the tower of Hanoi,Inform. Sci., to appear.Google Scholar
  38. 38.
    Chan Hat-Tung, A statistical analysis of the towers of Hanoi problem,Int. J. Comput. Math. 28 (1989), 57–65.CrossRefGoogle Scholar
  39. 39.
    Michael Barnsley,Fractals Everywhere, Boston: Academic Press (1993).MATHGoogle Scholar
  40. 40.
    Michael Barnsley, A Better way to compress images, BYTE, January 1988.Google Scholar
  41. 41.
    Michael Barnsley and A. E. Jacquin, Application of recurrent iterated function systems to images, SPIE1001 (1988), 122–131.Google Scholar
  42. 42.
    A. E. Jacquin,A Fractal Theory of Iterated Markov Operators with Applications to Digital Image Coding, Ph.D. Thesis, Georgia Institute of Technology (1989).Google Scholar
  43. 43.
    A. E. Jacquin, A novel fractal block-coding technique for digital images, ICASSP 90 (1990).Google Scholar
  44. 44.
    Jon Waite and Mark Beaumont, An introduction to block based fractal image coding, preprint, British Telecom Research Station, Ipswich (1991).Google Scholar
  45. 45.
    Gregory J. Chaitin,Algorithmic Information Theory, Cambridge: Cambridge University Press, (1987).CrossRefGoogle Scholar
  46. 46.
    Jack Cohen and Ian Stewart, The information in your hand,Mathematical Intelligencer 13(3) (1991), 12–15.CrossRefGoogle Scholar
  47. 47.
    Martin Gardner,Mathematical Puzzles and Diversions from Scientific American, London: Bell (1961).Google Scholar
  48. 48.
    Michael F. Barnsley and Lyman P. Hurd,Fractal Image Compression, Wellesley MA: A. K. Peters (1993).Google Scholar

References

  1. 1.
    S. Baring-Gould,Cornish Characters and Strange Events, Bodley Head (1909).Google Scholar
  2. 2.
    W. H. Paynter, Daniel Gumb, The Cornish cave-man mathematician,Old Cornwall: Journal of the Federation of Old Cornwall Societies, II (4) (1932).Google Scholar
  3. 3.
    C. Godfrey and A. W. Siddons,Elementary Geometry, 4th ed., Cambridge: Cambridge University Press (1962).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1995

Authors and Affiliations

  • Ian Stewart
    • 1
  1. 1.Mathematics Institute University of Warwick CoventryUnited Kingdom

Personalised recommendations