Skip to main content
Log in

Crystallographic fatigue crack growth in incompatible Aluminum Bicrystals: Its Dependence on Secondary Slip

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The secondary slip behavior ahead of crystallographic fatigue cracks and its effect on the crack growth near the grain boundaries (GBs) in\([12\bar 1]\) tilt nonsymmetrical aluminum bicrystals under constant cyclic stress amplitude have been systematically examined. The displacement field ahead of short crack tips near the interfaces in two specimens has been measured by using a microfiducial grid technique. It has been observed that the critical persistent slip band (PSB) ahead of a short crack tip near the GB in a middle misoriented bicrystal was able to develop as long as the primary one and resulted in a temporary stage II growth. As a longer crystal- lographic crack grew into the grain boundary affected zone (GBAZ), activation of the critical slip ahead of the crack front and crack branching along the critical PSB occurred in all groups of the aluminum bicrystals, which reveals a crucial role of the critical slip in increasing the crack opening and triggering the slip in the adjacent grain. On the other hand, cross slip became the dominant slip mode ahead of the crystallographic crack front near the GB in a bicrystal of larger misfit angles and drove the crack along the cross PSB, a steep path with a remarkably high growth rate, until it propagated into the GBAZ. The resultant stress on the secondary slip system ahead of a crack front near the interface contributed by the internal stress due to both intergranular and intragranular incompatible strain, as well as the enhanced crack tip stress, has been evaluated and rationalizes the activation of the secondary slip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nageswararao and V. Gerold:Metall. Trans. A, 1976, vol. 7A, pp. 1847–55.

    Article  CAS  Google Scholar 

  2. Z.S. Basinski and S.J. Basinski:Scripta Metall., 1984, vol. 18, pp. 851–56.

    Article  CAS  Google Scholar 

  3. J.S. Crompton, J.W. Martin, and G.R. Leverant:Metall. Trans. A, 1984, vol. 15A, pp. 1711–19.

    Article  CAS  Google Scholar 

  4. J.S. Wojcik, K.S. Chan, and D.A. Koss:Acta Metall., 1988, vol. 36, pp. 1261–70.

    Article  CAS  Google Scholar 

  5. D.A. Koss and K.S. Chan:Acta Metall., 1980, vol. 28, pp. 1245–52.

    Article  CAS  Google Scholar 

  6. C.Y. Yang and H.W. Liu:Int. J. Fract., 1981, vol. 17, pp. 157–68.

    Article  CAS  Google Scholar 

  7. Chingshen Li and T. Bretheau:Acta Metall., 1989, vol. 37, pp. 2645–50.

    Article  CAS  Google Scholar 

  8. Sun Ig Hong and Campbell Laird:Metall. Trans. A, 1991, vol. 22A, pp. 415–25.

    Article  CAS  Google Scholar 

  9. J.P. Hirth:Metall. Trans., 1972, vol. 3, pp. 3047–62.

    Article  CAS  Google Scholar 

  10. J.S. Wang and P.M. Adderson:Acta Metall. Mater., 1991, vol. 39, pp. 779–92.

    Article  CAS  Google Scholar 

  11. C. Fong and D. Tromans:Metall. Trans. A, 1988, vol. 19A, pp. 2765–73.

    Article  CAS  Google Scholar 

  12. Chingshen Li:Acta Metall. Mater., 1990, vol. 38, pp. 2129–34.

    Article  Google Scholar 

  13. Chingshen Li:Int. J. Fract., 1990, vol. 43, pp. 227–39.

    Article  Google Scholar 

  14. Chingshen Li:Proc. Mechanical Behaviour of Materials VI, 1991, vol. 4, pp. 331–36.

    Google Scholar 

  15. C. Rey and A. Zaoui:Acta Metall., 1980, vol. 28, pp. 687–97.

    Article  CAS  Google Scholar 

  16. D.G. Attwood and P.H. Haziledino:Metallography, 1976, vol. 9, pp. 483–500.

    Article  CAS  Google Scholar 

  17. T. Bretheau, P. Mussot, and C. Rey:Trans. ASME, J. Eng. Mater. Technol., 1984, vol. 106, pp. 304–10.

    Article  CAS  Google Scholar 

  18. O. Vorren and N. Ryum:Acta Metall., 1988, vol. 36, pp. 1443–53.

    Article  CAS  Google Scholar 

  19. A.S. Chang and C. Laird:Fatigue Eng. Mater. Struct., 1981, vol. 4, pp. 343–51.

    Article  Google Scholar 

  20. H. Mugharabi, F. Acerman, and K. Herz: inFatigue Mechanisms, ASTM STP 675, ASTM, Philadelphia, PA, 1978.

    Google Scholar 

  21. J.M. Finney and C. Laird:Phil. Mag., 1975, vol. 31, pp. 339–52.

    Article  CAS  Google Scholar 

  22. K.S. Chan, J.E. Hack, and G.R. Leverant:Metall. Trans. A, 1986, vol. 17A, pp. 1739–50.

    Article  Google Scholar 

  23. P.C. Paris and G.C. Sih:Fracture Toughness Testing and Its Application, ASTM STP 381, ASTM, Philadelphia, PA, 1965, pp. 30–83.

    Book  Google Scholar 

  24. G.C. Sih and H. Liebowitz:Fracture, H. Liebowitz, ed., Academic Press, New York, NY, 1968, vol. 2, pp. 67–190.

    Google Scholar 

  25. J. Awatani, K. Katagiri, and T. Shiraishi:Metall. Trans. A, 1976, vol. 7A, pp. 807–10.

    Article  CAS  Google Scholar 

  26. A.H. Purcell and J. Weertman:Metall. Trans. A, 1974, vol. 5, pp. 1805–09.

    Article  CAS  Google Scholar 

  27. J. Awatani, K. Katagiri, and T. Shiraishi:Metall. Trans. A, 1976, vol. 7A, pp. 807–10.

    Article  CAS  Google Scholar 

  28. N. Thompson, N.J. Wadjworth, and N. Lonat:Phil. Mag., 1956, vol. 1, pp. 112–23.

    Article  Google Scholar 

  29. H.I. Kaplam and C. Laird:Trans. AIME, 1967, vol. 239, pp. 1017–29.

    Google Scholar 

  30. R.S. Davies, R.L. Fleisher, J.D. Livingston, and B. Chalmers:Trans. AIME, 1957, vol. 218, pp. 245–62.

    Google Scholar 

  31. P. Neumann:Z. Metallkd., 1967, vol. 58, pp. 781–89.

    Google Scholar 

  32. C.Y. Yang and H.W. Liu:Int. J. Fract., 1981, vol. 17, pp. 157–68.

    Article  CAS  Google Scholar 

  33. Chingshen Li:Fatigue Fract. Eng. Mater. Struct., 1989, vol. 12, pp. 59–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Taiyuan University of Technology,

On leave from Taiyuan University of Technology,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C. Crystallographic fatigue crack growth in incompatible Aluminum Bicrystals: Its Dependence on Secondary Slip. Metall Trans A 23 (Suppl 1), 3293–3301 (1992). https://doi.org/10.1007/BF03024536

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03024536

Keywords

Navigation