Skip to main content
Log in

Void growth and coalescence in Constrained Silver Interlayers

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The mechanisms of void growth and coalescence during fracture of thin Ag interlayers were studied by tensile testing and metallographic examination. No measurable void growth was observed in the deformed interlayers prior to fracture. The fracture surface dimple size, how- ever, increased with increasing interlayer diameter-to-thickness ratio(D/T). The experimental results suggest that fracture in the constrained Ag interlayers occurred by void initiation at sil- icon oxide inclusions followed immediately by void coalescence. The highly triaxial stress state in the interlayer promoted void coalescence by plastic instability and accounts for the observed change in fracture surface dimple size withD/T. An expression, based upon a slip-line field model of the deformation zone between neighboring voids, is presented which relates the dimple size to the average inclusion diameter and the stress state in the interlayer. The predictions of the expression are in broad agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Floreen and H.W. Hayden:Scripta Metall., 1970, vol. 4, pp. 87–94.

    Article  CAS  Google Scholar 

  2. T.B. Cox and J.R. Lo:Metall. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  3. M.N. Bassim, R.J. Klassen, M.R. Bayoumi, and H.G.F. Wilsdorf:Mater. Sci. Eng., 1987, vol. 92, pp. 107–11.

    Article  CAS  Google Scholar 

  4. R.J. Boucier, D.A. Koss, R.E. Smelser, and O. Richmond:Acta Metall., 1986, vol. 34, pp. 2443–53.

    Article  Google Scholar 

  5. N. Aravas and R.M. McMeeking:J. Mech. Phys. Solids, 1985, vol. 33, pp. 25–49.

    Article  Google Scholar 

  6. N. Aravas and R.M. McMeeking:Int. J. Fract., 1985, vol. 29, pp. 21–38.

    Article  Google Scholar 

  7. V. Tvergaard:Acta Metall., 1991, vol. 39, pp. 419–26.

    Article  CAS  Google Scholar 

  8. F.A. McClintock:J. Appl. Mech., 1968, vol. 35, pp. 363–71.

    Article  Google Scholar 

  9. J.R. Rice and D.M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  10. D.M. Tracey:J. Mech. Phys. Solids, 1971, vol. 3, pp. 301–15.

    Google Scholar 

  11. G. Le Roy, J.D. Embury, G. Edward, and M.F. Ashby:Acta Metall., 1981, vol. 29, pp. 1509–22.

    Article  Google Scholar 

  12. P.F. Thomason:J. Inst. Met., 1968, vol. 96, pp. 360–65.

    Google Scholar 

  13. P.F. Thomason:Acta Metall., 1981, vol. 29, pp. 763–77.

    Article  Google Scholar 

  14. L.S. Sigl and S. Schmauder:Int. J. Fract., 1988, vol. 36, pp. 305–17.

    Article  CAS  Google Scholar 

  15. R.J. Klassen, G.C. Weatherly, and B. Ramaswami: University of Toronto, Toronto, ON, Canada, unpublished research, 1990.

  16. N. Bredzs:Weld. J., 1954, vol. 33, pp. 545s-63s.

    Google Scholar 

  17. N. Bredzs and H. Schwartzbart:Weld. J., 1956, vol. 35, pp. 610s-15s.

    Google Scholar 

  18. W.G. Moffat and J. Wulff:Trans. AIME, 1957, vol. 209, pp. 442–45.

    Google Scholar 

  19. J.R. Griffiths and J.A. Charles:Met. Sci. J., 1968, vol. 2, pp. 89–92.

    Article  Google Scholar 

  20. H.J. Saxton, A.J. West, and C.R. Barrett:Metall. Trans., 1971, vol. 2, pp. 999–1007.

    Article  CAS  Google Scholar 

  21. A.J. West, H.J. Saxton, A.S. Tetelman, and C.R. Barrett:Metall. Trans., 1971, vol. 2, pp. 1009–17.

    Article  CAS  Google Scholar 

  22. E.A. Almond, D.K. Brown, G.J. Davies, and A.M. Cottenden:Int. J. Mech. Sci., 1983, vol. 25, pp. 175–89.

    Article  Google Scholar 

  23. B.J. Dalgleish, M.C. Lu, and A.G. Evans:Acta Metall., 1988, vol. 36, pp. 2029–35.

    Article  CAS  Google Scholar 

  24. B.J. Dalgleish, K.P. Trumble, and A.G. Evans:Acta Metall., 1989, vol. 37, pp. 1923–31.

    Article  CAS  Google Scholar 

  25. R.J. Klassen: Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 1990.

    Google Scholar 

  26. E.E. Underwood:Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

  27. R. Hill:The Mathematical Theory of Plasticity, Oxford University Press, New York, NY, 1985, p. 226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of

Formerly Graduate Student, Department of

Formerly with the Department of Metallurgy

Formerly with the Department of Metallurgy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klassen, R.J., Weatherly, G.C. & Ramaswami, B. Void growth and coalescence in Constrained Silver Interlayers. Metall Trans A 23 (Suppl 1), 3273–3280 (1992). https://doi.org/10.1007/BF03024534

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03024534

Keywords

Navigation