Years ago

Orbits of asteroids, a braid, and the first link invariant

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. Artin, Theorie der Zopfe, Abhandlungen Math. Sem. Hamburg. Univ. 4 (1926), 47–72.

    Article  MathSciNet  Google Scholar 

  2. 2.

    N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936, Oxford: Clarendon Press (1976).

    Google Scholar 

  3. 3.

    G. Burde and H. Zieschang, Knots, Berlin: de Gruyter (1985).

    Google Scholar 

  4. 4.

    B. Chandler and W. Magnus, The History of Combinatorial Group Theory, New York:Springer-Verlag (1982).

    Google Scholar 

  5. 5.

    C. F. Gauss, Werke, 12 Vols., Leipzig:B. G. Teubner, (1863-1933).

  6. 6.

    A. Hurwitz, Über Riemannsche Flachen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1–61.

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    J. B. Listing, Vorstudien zur Topologie, Göttinger Studien 2 (part 1) (1847), 811–675; reprinted as a book by Vandenhoeck & Ruprecht, Gottingen (1848).

    Google Scholar 

  8. 8.

    W. Magnus, Braid groups: A survey, in Proceedings of the Second International Conference on the Theory of Groups, Lecture Notes in Mathematics No. 372, Berlin:Springer-Verlag (1974).

    Google Scholar 

  9. 9.

    J. C. Maxwell, Treatise on Electricity and Magnetism, 2 vols., Oxford:Clarendon Press (1873).

    Google Scholar 

  10. 10.

    J. C. Pont, La topologie algebrique des origines à Poincaré, Paris:Presses Universitaires de France (1974).

    Google Scholar 

  11. 11.

    C. Schilling and I. Kramer, Briefwechsel zwischen Gauss und Olbers, 2 vols., Berlin: Springer-Verlag (1900/1909).

  12. 12.

    P. Stäckel, Gauss als Geometer, in Materialien für eine wissenschaftliche Biographie von Gauss, Eds. F. Klein, M. Brendel and L. Schlesinger, Leipzig: B. G. Teubner (1918), Vol. 5, pp. 26.

  13. 13.

    P. G. Tait, On knots, Trans. Roy. Soc. Edinburgh 28, (1877), 145–190; reprinted in Tait’s Scientific Papers, Vol. I, Cambridge: Cambridge University Press (1898), pp. 273–317.

    MATH  Google Scholar 

  14. 14.

    A. Weil, Riemann, Betti and the birth of topology, Arch. History Exact Sci. 20(1979), 91–96.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moritz Epple.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Epple, M. Years ago. The Mathematical Intelligencer 20, 45–52 (1998). https://doi.org/10.1007/BF03024400

Download citation

Keywords

  • Celestial Body
  • Mathematical Intelligencer
  • Braid Group
  • Oriented Area
  • Analysis Situs