Advertisement

The Mathematical Intelligencer

, Volume 20, Issue 1, pp 45–52 | Cite as

Years ago

Orbits of asteroids, a braid, and the first link invariant
  • Moritz Epple
Department

Keywords

Celestial Body Mathematical Intelligencer Braid Group Oriented Area Analysis Situs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Artin, Theorie der Zopfe, Abhandlungen Math. Sem. Hamburg. Univ. 4 (1926), 47–72.CrossRefMathSciNetGoogle Scholar
  2. 2.
    N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936, Oxford: Clarendon Press (1976).zbMATHGoogle Scholar
  3. 3.
    G. Burde and H. Zieschang, Knots, Berlin: de Gruyter (1985).zbMATHGoogle Scholar
  4. 4.
    B. Chandler and W. Magnus, The History of Combinatorial Group Theory, New York:Springer-Verlag (1982).CrossRefzbMATHGoogle Scholar
  5. 5.
    C. F. Gauss, Werke, 12 Vols., Leipzig:B. G. Teubner, (1863-1933).Google Scholar
  6. 6.
    A. Hurwitz, Über Riemannsche Flachen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1–61.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    J. B. Listing, Vorstudien zur Topologie, Göttinger Studien 2 (part 1) (1847), 811–675; reprinted as a book by Vandenhoeck & Ruprecht, Gottingen (1848).Google Scholar
  8. 8.
    W. Magnus, Braid groups: A survey, in Proceedings of the Second International Conference on the Theory of Groups, Lecture Notes in Mathematics No. 372, Berlin:Springer-Verlag (1974).Google Scholar
  9. 9.
    J. C. Maxwell, Treatise on Electricity and Magnetism, 2 vols., Oxford:Clarendon Press (1873).Google Scholar
  10. 10.
    J. C. Pont, La topologie algebrique des origines à Poincaré, Paris:Presses Universitaires de France (1974).zbMATHGoogle Scholar
  11. 11.
    C. Schilling and I. Kramer, Briefwechsel zwischen Gauss und Olbers, 2 vols., Berlin: Springer-Verlag (1900/1909).Google Scholar
  12. 12.
    P. Stäckel, Gauss als Geometer, in Materialien für eine wissenschaftliche Biographie von Gauss, Eds. F. Klein, M. Brendel and L. Schlesinger, Leipzig: B. G. Teubner (1918), Vol. 5, pp. 26.Google Scholar
  13. 13.
    P. G. Tait, On knots, Trans. Roy. Soc. Edinburgh 28, (1877), 145–190; reprinted in Tait’s Scientific Papers, Vol. I, Cambridge: Cambridge University Press (1898), pp. 273–317.zbMATHGoogle Scholar
  14. 14.
    A. Weil, Riemann, Betti and the birth of topology, Arch. History Exact Sci. 20(1979), 91–96.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1998

Authors and Affiliations

  • Moritz Epple
    • 1
  1. 1.AG Geschichte der exakter Wissenschaften, Fachbereich 17-MathematikUniversity of MainzMainzGermany

Personalised recommendations