The Mathematical Intelligencer

, Volume 15, Issue 4, pp 7–12 | Cite as

On Newton’s problem of minimal resistance

  • Giuseppe Buttazzo
  • Bernhard KawohlEmail author


Convex Body Admissible Function Hypersonic Flow Stream Direction Radial Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Botteron and P. Marcellini, A general approach to the existence of minimizers of one-dimensional noncoercive integrals of the calculus of variations,Ann. Inst. H. Poincaré Analyse Non Linéaire 8 (1991), 197–223.zbMATHMathSciNetGoogle Scholar
  2. 2.
    G. Buttazzo, V. Ferone and B. Kawohl, in preparation.Google Scholar
  3. 3.
    P. Funk,Variationsrechnung und ihre Anwendungen in Physik und Technik, Grundlehren 94 Heidelberg: Springer-Verlag (1962).Google Scholar
  4. 4.
    H. H. Goldstine,A History of the Calculus of Variations from the 17th through the 19th Century, Heidelberg: Springer-Verlag (1980).CrossRefzbMATHGoogle Scholar
  5. 5.
    W. D. Hayes and R. F. Probstein:Hypersonic Flow Theory, New York, Academic Press (1966).zbMATHGoogle Scholar
  6. 6.
    B. Kawohl,Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics No. 1150, Heidelberg: Springer-Verlag (1985).Google Scholar
  7. 7.
    A. Kneser,Ein Beitrag zur Frage nach der zweckmäβigsten Gestalt der Geschoβspitzen.Arch. Math. Phys. 2 (1902), 267–278.zbMATHGoogle Scholar
  8. 8.
    P. Marcellini,Nonconvex Integrals of the Calculus of Variations, Proceedings of Methods of Nonconvex Analysis; Varenna 1989, A. Cellina, ed. Lecture Notes in Mathematics No. 1446, Heidelberg: Springer-Verlag (1990), pp. 16–57.Google Scholar
  9. 9.
    A. Miele,Theory of Optimum Aerodynamic Shapes, New York: Academic Press (1965).zbMATHGoogle Scholar
  10. 10.
    I. Newton,Philosophiae Naturalis Principia Mathematica (1686).Google Scholar
  11. 11.
    S. Parma, Problemi di minimo su spazi di funzioni convesse, Tesi di Laurea, Università di Ferrara, Ferrara (1991).Google Scholar
  12. 12.
    L. Tonelli:Fondamenti di Calcolo dette Variazioni, Bologna: Zanichelli (1923).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1993

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly
  2. 2.Mathematisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations