Skip to main content
Log in

Control of boundary layer flow transition via distributed

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

A reduced-order linear feedback controller, which is used to control the linear disturbance in two-dimensional plane Poiseuille flow, is applied to a boundary layer flow for stability control. Using model reduction and linear-quadratic-Gaussian/loop-transfer-recovery control synthesis, a distributed controller is designed from the linearized two-dimensional Navier-Stokes equations. This reduced-order controller, requiring only the wall-shear information, is shown to effectively suppress the linear disturbance in boundary layer flow under the uncertainty of Reynolds number. The controller also suppresses the nonlinear disturbance in the boundary layer flow, which would lead to unstable flow regime without control. The flow is relaminarized in the long run. Other effects of the controller on the flow are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A,B,C,D:

Matrices associated with state-space equation

\(\hat A,\hat B,\hat C,D\) :

Matrices associated with reduced-order state-space equation

A c :

Loop coefficient matrix

A f :

Matrix associated with error evolution equation

A m :

Amplitude of disturbance

a mn,bmn,Cmn,dmn :

Coefficients of spectral decomposition

eα:

Error between internal state\(\hat x_\alpha \) and estimate state\(\tilde x_\alpha \)

F:

Matrix associated with cost criterion

g :

Forcing term in Navier-Stokes equation

h :

half channel height

I:

Identity matrix

\(\hat K_\alpha \) :

Control gain matrix

L :

4th order operator for linear term

L x :

Horizontal length

\(\hat L_\alpha \) :

Kaiman gain matrix

N :

4th order operator for nonlinear term

N a :

Matrix associated with cost criterion,\(\hat C_\alpha ^T \)

P :

Pressure

P α :

Conditional error variance

Q α :

Matrix associated with cost criterion,\(\hat C_\alpha ^T \hat C_\alpha \)

R α :

Matrix associated with cost criterion, Dα T αDα+FTαFα

Re:

Real part of complex number

Re :

Reynolds number based on half channel height

Re δ* :

Reynolds number based on displacement thickness

S α :

Solution of algebraic Riccati equation

t :

time

U :

Mean velocity in Poiseuille flow

U b :

Blasius mean velocity

U:

Input vector

U :

Disturbance velocity

\(\hat u(y)\) :

Eigenfunction of Orr-Sommerfeld solution

ũ:

Intermediate velocity

υ w :

Blowing/suction at wall

V, W:

Power spectral density of v and w

v, w:

White Gaussian noise associated with LQG

x :

State-space vector

\(\hat x\) :

Reduced-order state space vector

\(\tilde x\) :

Conditional mean estimate of\(\hat x\)

x, y :

Physical coordinate

y max :

Height of physical domain of boundary layer flow

Z t :

Measurement history

z:

Output vector

z :

Wall-shear measurement

α :

Wavenumber

αlβlγl,Sl :

Coefficients associated with RK3

β},ρ :

Tuning parameter for LQG/LTR

Γ α :

Input matrix associated with LQG problem

Γ m :

Combination of Chebyshev polynomial

Δ :

Laplacian operator

δ * :

Displacement thickness

δ i, :

Kronecker delta function

T:

Cost criterion

ψ :

Streamfunction

η max :

Height of computational domain of boundary layer flow

φ :

Pseudo pressure

σ :

Parameter to determine the grid concentration

υ :

Kinematic viscosity

σ α :

Filter residual

ω :

Eigenvalue of Orr-Sommerfeld solution

n :

Time step

i, j :

Index representing horizontal and wall-normal direction ( = 1, 2)

n :

Wavenumber index

l :

RK substep ( = 1, 2, 3)

References

  • Akhavan, R., Jung, W. J. and Mangiavacchi, N., 1993, “Turbulence Control in Wall-Bounded Flows by Span wise Oscillations,”Appl. Sci. Res., Vol. 51, p. 299.

    Article  Google Scholar 

  • Berger, T., Lee, C., Kim, J. and Lim, J., 2000, “Turbulent Boundary Layer Control Utilizing the Lorentz Force,”Phys. Fluids, Vol. 12, No. 3, p. 631.

    Article  MATH  Google Scholar 

  • Bewley, T. and Liu, S., 1998, “Optimal and Robust Control and Estimation of Linear Paths to Transition,”J. Fluid Mech. Vol. 365, p. 305.

    Article  MATH  MathSciNet  Google Scholar 

  • Bewley, T. and Moin, P., 1994, “Optimal Control of Turbulent Channel Flow,”ASME Conference, ASME DE-Vol. 75.

  • Choi, H. Moin, P. and Kim, J., 1994, “Active Turbulence Control for Drag Reduction in Wall-Bounded Flows,”J. Fluid Mech., Vol. 262, p. 75.

    Article  MATH  Google Scholar 

  • Choi, H., Temam, R., Moin, P. and Kim, J., 1993, “Feedback Control for Unsteady Flow and Its Application to the Stochastic Burgers Equation, ”J. Fluid Mech., Vol. 253, p. 509.

    Article  MATH  MathSciNet  Google Scholar 

  • Cortelezzi, L. and Speyer, J. L., 1998, “Robust Reduced-Order Controller of Laminar Boundary Layer Transitions,”Phys. Rev. E, Vol. 58, No. 2, p. 1906.

    Article  Google Scholar 

  • Cortelezzi, L., Lee, K. H., Kim, J. and Speyer, J. L., 1998, “Skin-Friction Drag Reduction via Robust Reduced-Order Linear Feedback Control,”Int. J. Comp. Fluid Dyn., Vol. 11, No. 1-2, p. 79.

    Article  MATH  Google Scholar 

  • Door, F. W., 1970, “The Direct Solution of the Discrete Poisson Equation on a Rectangle,”SIAM Rev., Vol. 12, p. 248.

    Article  MathSciNet  Google Scholar 

  • Door, F. W., 1973, “Direct Methods for the Solution of Poisson ’s Equation on a Staggered Grid,”J. Computational Physics, Vol. 12, p. 422.

    Article  Google Scholar 

  • Doyle, J. C. and Stein, G., 1981, “Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis,”IEEE Trans. on Automatic Control, AC-26(2).

  • Gad-el-Hak, M. and Bushnell, D.M., 1991, “Separation Control: Review,”Journal of Fluids Engineering, Vol. 113, p. 5.

    Article  Google Scholar 

  • Gad-el-Hak, M., 1994, “Interactive Control of Turbulent Boundary Layer-A Futuristic Overview,”AIAA Journal, Vol. 32, No. 9, p. 1753.

    Article  Google Scholar 

  • Gad-el-Hak, M., 1989, “Flow Control,”Applied Mechanics reviews, Vol. 42, No. 10, p. 261.

    Article  Google Scholar 

  • Joshi, S., Speyer, J. L., and Kim, J., 1995,Proc. 34th Conference on Decision and Control, New Orleans, Louisiana.

    Google Scholar 

  • Joshi. S., Speyer, J. L. and Kim, J., 1997, “A Systems Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow,”J. Fluid Mech., Vol. 332, p. 157.

    Google Scholar 

  • Joshi, S., Speyer, J. L. and Kim, J., 1999, “Finite Dimensional Optimal Control of Poiseuille Flow,”J. Guidance, Control, and Dynamics, Vol. 22, No. 2.

  • Kim, J. and Moin, P., 1985, “Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations,”J. Computational Physics, Vol. 59, p. 308.

    Article  MATH  MathSciNet  Google Scholar 

  • Koumoutsakos, P., 1999, “Vorticity Flux Control for a Turbulent Channel Flow,”Phys. Fluids, Vol. 11, No. 2, p. 248.

    Article  MATH  Google Scholar 

  • Laurien, E. and Kleiser, L., 1986, “Numerical Simulation of Boundary-Layer Transition and Transition Control,”J. Fluid Mech., Vol. 199, p. 403.

    Article  Google Scholar 

  • Lee, C., Kim, J., Bobcock, D. and Goodman, R., 1997, “Application of Neural Networks to Turbulence Control for Drag Reduction,”Phys. Fluids, Vol. 9, No.6, p. 1740.

    Article  Google Scholar 

  • Lee, Keun H., 1999, “A System Theory Approach to Control of Transitional and Turbulent Flows,” Ph. D. dissertation, Dept. of Mechanical Eng. Univ. of California, Los Angeles, CA.

  • Lee, Keun H., Cortelezzi, L., Kim. J. and Speyer, J. L., 2001, “Application of Robust Reduced-Order Controller to Turbulent Flows for Drag Reduction,”Phys. Fluids, Vol. 13, No. 5, p. 1321.

    Article  Google Scholar 

  • Lele, S. K., 1991, “An Improvement of Fractional Step Methods for the Incompressible Navier-Stokes Equations,”J. Computational Physics, Vol. 92, p. 369.

    Article  Google Scholar 

  • Lele, S. K., 1992, “Compact Finite Difference Schemes with Spectral-like Resolution,”J. Computational Physics, Vol. 103, p. 16.

    Article  MATH  MathSciNet  Google Scholar 

  • Lim, J. and Kim, J., 2000, “A Linear Process in Wall-Bounded Turbulent Shear Flows,”Phys. Fluids, Vol. 12, No. 8, p. 1885.

    Article  MathSciNet  Google Scholar 

  • Modi, V. J., 1997, “Moving Surface Boundary-Layer Control: A Review,”Fluids and Structures, Vol. 11, No. 6, p. 627.

    Article  Google Scholar 

  • Reed, H. L., Saric, W. S. and Arnal, D., 1996, “Linear Stability Theory Applied to Boundary Layers,”Annu. Rev. Fluid Mech., Vol. 28, p. 389.

    Article  MathSciNet  Google Scholar 

  • Rhee, I. and Speyer, J. L., 1991, “A Game Theoretic Approach to a Finite Time Disturbance Attenuation Problem,”IEEE Trans., Automatic Control, Vol. 36, No. 9, p. 1021.

    Article  MATH  MathSciNet  Google Scholar 

  • Schumann, U. and Sweet, R. A., 1988, “Fast Fourier Transforms for Direct Solution of Poisson’s Equation with Staggered Boundary Conditions,”J. Computational Physics, Vol. 75, p. 123.

    Article  MATH  MathSciNet  Google Scholar 

  • Zang, T. A. and Hussaini, M. Y., 1985, “Numerical Experiments on Subcritical Transition Mechanisms,”AIAA Paper, 85-0296.

  • Zhou, K., Doyle, J. C. and Glover, K., 1996, Robust and Optimal Control, Prentice Hall.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Hyoung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.H. Control of boundary layer flow transition via distributed. KSME International Journal 16, 1561–1575 (2002). https://doi.org/10.1007/BF03021658

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03021658

Key Words

Navigation