Skip to main content
Log in

The formulation of linear theory of a reflected shock in cylindrical geometry

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper we formulate the linear theory for compressible fluids in cylindrical geometry with small perturbation at the material interface. We derive the first order equations in the smooth regions, boundary conditions at the shock fronts and the contact interface by linearizing the Euler equations and Rankine-Hugoniot conditions. The small amplitude solution formulated in this paper will be important for calibration of results from full numerical simulation of compressible fluids in cylindrical geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Arfken.Mathematical Methods for Physicists. Academic Press, New York, 1970.

    MATH  Google Scholar 

  2. D. Arnett, B. Fryxell and E. Muller.Instabilities and Nonradial Motion in SN 1987A. Astrophys. J., 341:L63-L66, 1989.

    Article  Google Scholar 

  3. S. F. Borg.Matrix-Tensor Methods in Continuum Mechanics. Springer-Verlag, Princeton, NJ, 1990.

    Book  MATH  Google Scholar 

  4. A.J. Chorin and J. E. Marsden.A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  5. R. Courant and K. O. Friedrichs.Supersonic flow and shock waves. Springer-Verlag, New York, 1976.

    Book  MATH  Google Scholar 

  6. G. Fraley.Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction. Phys. Fluids, 29(2):376–386, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Grove, R. Holmes, D. H. Sharp, Y. Yang, and Q. Zhang.Quantitative theory of Richtmyer-Meshkov instability. Phys. Rev. Lett., 71(21):3473–3476, 1993.

    Article  Google Scholar 

  8. J. W. Jacobs, D. G. Jenkins, D. L. Klein and R. F. Benjamin.Nonlinear Growth of a Shock-Accelerated Instability of a Thin Fluid Layer. J. Fluid Mech., 295:23–42, 1995.

    Article  MathSciNet  Google Scholar 

  9. J. H. Kim.Small amplitude theory of Richtmyer-Meshkov instability in cylindrical and spherical geometries. Ph.D. thesis, SUNY at Stony Brook, 1997.

  10. E. E. Meshkov.Instability of a shock wave accelerated interface between two gases. NASA Tech. Trans., F-13:074, 1970.

    Google Scholar 

  11. R. D. Richtmyer.Taylor Instability in Shock Acceleration of Compressible Fluids. Comm. Pure Appl. Math., 13:297–319, 1960.

    Article  MathSciNet  Google Scholar 

  12. P. D. Roberts, S. J. Rose, P. C. Thompson and R. J. Wright.The stability of multiple-shell IGF targets. J. Phys. D: Appl. Phys., 13:1957–1969, 1980.

    Article  Google Scholar 

  13. Li Tatsien and Yu Wenci.Boundary Value Problem for Quasilinear Hyperbolic Systems. Duke University Mathematics Series, 1985.

  14. Joel Smoller.Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  15. Y. Yang, Q. Zhang and D. H. Sharp.Small Amplitude Theory of Richtmyer-Meshkov Instability. Phys. Fluids, 6(5): 1856–1873, 1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Hong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H. The formulation of linear theory of a reflected shock in cylindrical geometry. Korean J. Comput. & Appl. Math. 9, 373–389 (2002). https://doi.org/10.1007/BF03021548

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03021548

AMS Mathematics Subject Classification

Key words and Phrases

Navigation