Skip to main content
Log in

Estimation of soil moisture content from L- and P-band AirSAR data: A case study in Jeju, Korea

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

One of the important applications of polarimetric SAR in the geohydrology and agriculture is the estimation of surface soil moisture from the polarimetric SAR data. During the PacRim AirSAR campaign in Korea, the ground truth data about soil moisture content and surface roughness characteristics were collected. We intend to retrieve the surface parameters over the bare soil from multi-polarization and multi-frequency AirSAR data. In this study, the theoretical scattering model, the IEM model is inverted by two existing algorithms—the multi-dimensional regression technique by Dawson et al. (1997) and the inversion using 3-layer artificial neural networks (ANNs) (Fung, 1994). As the first step, backscatter coefficients are calculated based on the ground truth information, and then training patterns are generated from within the valid ranges of surface parameters using the IEM model. The trained inversion models are tested to a set of AirSAR data as well as synthetic data. Root mean square (RMS) errors of estimated soil moisture from the AirSAR data are average 3.1% in the regression and 4.2% in the inversion using the ANNs. The methods to improve the inversion accuracy are investigated. First, the normalization of signal parameters reduced the number of pixels that fail to reasonable results in the regression model. Second, the use of co-polarization ratio as input units in the ANNs inversion scheme improve the soil moisture estimation, which results in an average RMS error of 2.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dawson, M.S., Fung, A.K. and Manry, M.T., 1997, A robust statistical-based estimator for soil moisture retrieval from radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 35, 57–67.

    Article  Google Scholar 

  • Dobson, M.C., Ulaby, F.T., Hallikainen, M.T. and El-Rayes, M.A., 1994, Microwave dielectric behavior of wet soil, part: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 32, 438–448.

    Article  Google Scholar 

  • Dubois, P.C., van Zyl, Z. and Engman, T., 1995, Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33, 915–926.

    Article  Google Scholar 

  • Fung, A.K., 1994, Microwave Scattering and Emission Models and Their Applications. Norwood, MA: Artech House.

    Google Scholar 

  • Hoeben, R. and Troch, P.A., 2000, Assimilation of active microwave observation data for soil moisture profile estimation. Water Resources Research, 36, 2805–2819.

    Article  Google Scholar 

  • Kim, Y. and van Zyl, J., 2000, On the relationship between polarimetric parameters. Proceedings, Annual IGARSS, p. 1298–1300.

  • Kitanidis, P.K., 1997, Introduction to Geostatistics: Application to Hydrogeology. Cambridge University Press, Now York.

    Google Scholar 

  • Oh, Y., Sarabandi, K. and Ulaby, F.T., 1992, An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30, 370–381.

    Article  Google Scholar 

  • Pauwls, Valentijn, R.N., Hoeben, R., Verhoest, N.E.C. and De Troch, F.P., 2001, The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation. Journal of Hydrology, 251, 88–102.

    Article  Google Scholar 

  • Peplinski, N.R., Ulaby, F.T. and Dobson, M.C., 1995, Dielectric properties of soils in the 0.3–1.3 GHz range” IEEE Transactions on Geoscience and Remote Sensing, 33, 803–807.

    Article  Google Scholar 

  • Rumelhart, D.E. and McClelland, J.L. (eds.), 1986, Parallel Distributed Processing. Cambridge, MA: MIT Press, Vol. 1, p. 318–362.

    Google Scholar 

  • van Oevelon, P.J. and Hoekman, D.H., 1999, Radar backscatter inversion techniques for estimation of surface soil moisture: EFEDA-Spain and HAPEX-Shel case study. IEEE Transactions on Geoscience and Remote Sensing, 37, 113–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, E.Y., Park, S.E., Moon, W.M. et al. Estimation of soil moisture content from L- and P-band AirSAR data: A case study in Jeju, Korea. Geosci J 6, 331–339 (2002). https://doi.org/10.1007/BF03020617

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03020617

Key words

Navigation