Abstract
Purpose: To determine the effects of the non-competitive NMDA-receptor antagonist S(+)-ketamine on neurological outcome in a rat model of incomplete cerebral ischemia.
Methods: Thirty rats were anesthetized, intubated and mechanically ventilated with isoflurane, O2 30% and nitrous oxide 70%. Following surgery animals were randomly assigned to one of the following treatment groups: Rats in group 1 (n= 10, control) received fentanyl (bolus: 10µg·kg−1 iv; infusion 25µg·kg−1·h−1) and N2O 70% / O2. Rats in group 2 (n= 10) received O2 30% in air and low-dose S(+)-ketamine (infusion: 0.25 mg·kg−1·min−1). Rats in group 3 (n= 10) received O2 30% in air and high-dose S(+)-ketamine (infusion: 1.0 mg·kg−1·min−1). Following 30 min equilibration period ischemia was induced by combined unilateral common carotid artery ligation and hemorrhagic hypotension to 35 mmHg for 30 min. Plasma catecholamines were assayed before and at the end of ischemia. Neurological deficit was evaluated for three postischemic days.
Results: Neurological outcome was improved with high-dose S(+)-ketamine when compared to fentanyl / N2O — anesthetized controls (9 vs 1 stroke related deaths,P<0.05). Increases in plasma catecholamine concentrations were higher in fentanyl / N2O — anesthetized (adrenaline baseline 105.5±92.1 pg·ml−1, during ischemia 948±602.8 pg·ml−1,P<0.05; noradrenaline baseline 407 ± 120.2 pg·ml−1, ischemia 1267±422.2 pg·ml−1,P<0.05) than in high-dose S(+)-ketamine-treated animals (adrenaline baseline 71±79.5 pg·ml−1, ischemia 237±131.9; noradrenaline baseline 317.9±310.5 pg·ml−1, ischemia 310.5±85.7 pg·ml−1).
Conclusion: Neurological outcome is improved following incomplete cerebral ischemia with S(+)-ketamine. Decreases in neuronal injury may be related to suppression of sympathetic discharge.
Résumé
Objectif: Déterminer les effets de l’antagoniste non compétitif du récepteur NMDA, la S(+)-kétamine, sur l’évolution neurologique d’un modèle rat d’ischémie cérébrale incomplète.
Méthode: L’isoflurane et un mélange d’O2 (30 %) et de protoxyde d’azote (70 %) ont servi à l’anesthésie, à l’intubation et à la ventilation mécanique de 30 rats. Après l’opération, on a réparti les rats au hasard en trois groupes. On a administré du fentanyl (bolus: 10µg·kg−1 iv; perfusion de 25µg·kg−1·h−1) avec N2O 70 % / O2 au groupe 1 (n=10, témoin); de l’O2 à 30 % dans de l’air et de faibles doses de S(+)-kétamine (perfusion: 0,25 mg·kg−1·min−1) au groupe 2 (n=10) et de I’O2 à 30 % dans de l’air et de fortes doses de S(+)-kétamine (perfusion: 1,0 mg·kg−1·min−1) au groupe 3 (n=10). Après une équilibration de 30 min, l’ischémie a été provoquée par la combinaison d’une ligature unilatérale de l’artère carotide primitive et d’une hypotension hémorragique à 35 mmHg pendant 30 min. Les catécholamines plasmatiques ont été évaluées avant et après l’ischémie. Le déficit neurologique a été étudié pendant trois jours après l’ischémie.
Résultats: L’évolution neurologique a été meilleure avec de fortes doses de S(+)-kétamine qu’avec l’alfentanyl / N2O (9 vs I décès reliés à un accident ischémique cérébral,P<0,05). L’augmentation des concentrations plasmatiques de catécholamines a été plus marquée avec l’alfentanyl / N2O (l’adrénaline de base à 105,5±92,1 pg·ml−1; pendant l’ischémie, 948±602,8 pg·ml−1,P<0,05; la noradrénaline de base à 407±120,2 pg·ml−1; pendant l’ischémie, 1267±422,2 pg·ml−1,P<0,05) qu’avec de fortes doses de S(+)-kétamine (l’adrénaline de base à 71±79,5 pg·ml−1; pendant l’ischémie, 237±131,9; la noradrénaline de base à 317,9±310,5 pg·ml−1; pendant l’ischémie, 310,5±85,7 pg·ml−1).
Conclusion: L’utilisation de S(+)-kétamine permet une évolution neurologique supérieure après une ischémie cérébrale incomplète. Cette situation peut être reliée à la suppression de décharge sympathique.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983; 79: 565–75.
Wong EHF, Kemp JA, Priestley T, Knight AR, Woodruff GN. The anticonvulsant MK-801 is a potentN-methyl-D-aspartate antagonist. Proc Nat Acad Sci USA 1986; 83: 7104–8.
White PF, Schüttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ. Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br J Anaesth 1985; 57: 197–203.
Schüttler J, Stanski DR, White PF, et al. Pharmacodynamic modeling of the EEG effects of ketamine and its enantiomers in man. J Pharmacokinet Biopharm 1987; 15: 241–53.
Doenicke A, Kugler J, Mayer M, Angster R, Hoffmann P. Influence of racemic ketamine and S-(+)- ketamine on vigilance, performance and wellbeing. (German). Anaesthesist 1992; 41: 610–8.
Hoffman WE, Pelligrino D, Werner C, Kochs E, Albrecht RF, Schulte am Esch J. Ketamine decreases plasma catecholamines and improves outcome from incomplete cerebral ischemia in rats. Anesthesiology 1992; 76: 755–62.
Shapira Y, Shohami E. Experimental studies on brain oedema after blunt head injury: experimental approaches from animal experimentation to actual or possible clinical application. Eur J Anaesthesiol 1993; 10: 155–73.
Shapira Y, Artru AA, Lam AM. Ketamine decreases cerebral infarct volume and improves neurological outcome following experimental head trauma in rats. J Neurosurg Anesthesiol 1992; 4: 231–40.
Himmelseher S, Pfenninger E, Georgieff M. The effects of ketamine-isomers on neuronal injury and regeneration in rat hippocampal neurons. Anesth Analg 1996; 83: 505–12.
Hoffman WE, Thomas C, Albrecht RF. The effect of halothane and isoflurane on neurologic outcome following incomplete cerebral ischemia in the rat. Anesth Analg 1993; 76: 279–83.
Cavazzuti M, Porro CA, Biral GP, Benassi C, Barbieri GC. Ketamine effects on local cerebral blood flow and metabolism in the rat. J Cereb Blood Flow Metab 1987; 7: 806–11.
Pfenninger E, Dick W, Ahnefeld FW. The influence of ketamine on both normal and raised intracranial pressure of artificially ventilated animals. Eur J Anaesthesiol 1985; 2: 297–307.
Madsen JB, Cold GE. The Effects of Anaesthetics upon Cerebral Circulation and Metabolism. Experimental and Clinical Studies. Wien New York: Springer-Verlag 1990.
Albanèse J, Arnaud S, Rey M, Thomachot L, Alliez B, Martin C. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology 1997; 87: 1328–34.
Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990; 13: 171–82.
Olney JW. Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 1990; 30: 47–71.
Lees GJ. Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 1993; 54: 287–322.
Meldrum B. Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders. Brain Res 1993; 18: 293–314.
Werner C, Hoffman WE, Thomas C, Miletich DJ, Albrecht RF. Ganglionic blockade improves neurologic outcome from incomplete ischemia in rats: partial reversal by exogenous catecholamines. Anesthesiology 1990; 73: 923–9.
Hoffman WE, Kochs E, Werner C, Thomas C, Albrecht RF. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat. Reversal by the alpha-2-adrenergic antagonist atipamezole. Anesthesiology 1991; 75: 328–32.
Koorn R, Kahn RA, Brannan TS, Martinez-Tica J, Weinberger J, Reich DL. Effect of isoflurane and halothane onin vivo ichemia-induced dopamine release in the corpus striatum of the rat. A study using cerebral microdialysis. Anesthesiology 1993; 79: 827–35.
Nemoto EM, Klematavicius R, Melick JA, Yonas H. Norepinephrine activation of basal cerebral metabolic rate for oxygen (CMRO2) during hypothermia in rats. Anesth Analg 1996; 83: 1262–7.
Nicoll RA, Madison DV, Lancaster B. Noradrenergic modulation of neuronal excitability in mammalian hippocampus.In: Meltzer HY (Ed). Psychopharmacology: The third Generation of Progress. New York: Raven Press, 1987: 105.
de Courten-Myers M, Myers RE, Schoolfield S. Hyperglycemia enlarges infarct size in cerebrovascular occlusion in cats. Stroke 1988; 19: 623–30.
de Courten-Myers GM, Kleinholz M, Wagner KR, Myers RE. Normoglycemia (not hypoglycemia) optimizes outcome from middle cerebral artery occlusion. J Cereb Blood Flow 1994; 14: 227–36.
Hoffman WE, Braucher E, Pelligrino DA, Thomas C, Albrecht RF, Miletich DJ. Brain lactate and neurologic outcome following incomplete ischemia in fasted, non-fasted, and glucose-loaded rats. Anesthesiology 1990; 72: 1045–50.
Ginsberg MD, Prado R, Dietrich WD, Busto M, Watson BD. Hyperglycemia reduces the extend of cerebral infarction in rats. Stroke 1987; 18: 570–4.
Hoffman WE, Werner C, Kochs E, Segil L, Edelman G, Albrecht RF. Cerebral and spinal cord blood flow in awake and fentanyl-N2O anesthetized rats: evidence for preservation of blood flow autoregulation during anesthesia. J Neurosurg Anesthesiol 1992; 4: 31–5.
Kochs E, Hoffman WE, Werner C, Thomas C, Albrecht RF, Schulte am Esch J. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology 1992; 76: 245–52.
Miura Y, Mackensen GB, Nellgard B, Pearlstein RD, Warner DS. Effects of anesthetic agents on concentrations of plasma and brain catecholamines during near-complete and incomplete cerebral ischemia. Anesthesiology 1998; 89: A785.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reeker, W., Werner, C., Möllenberg, O. et al. High-dose S(+)- ketamine improves neurological outcome following incomplete cerebral ischemia in rats. Can J Anesth 47, 572–578 (2000). https://doi.org/10.1007/BF03018950
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03018950