Central dexmedetomidine attenuates cardiac dysfunction in a rodent model of intracranial hypertension

La dexmédétomidine centrale atténue la dysfonction cardiaque chez un modèle rongeur d’hypertension intracrânienne

Abstract

Purpose

To determine if central sympathetic blockade by dexmedetomidine, a selective alpha2 adrenergic receptor agonist, prevents cardiac dysfunction associated with intracranial hypertension (ICH) in a rat model.

Methods

Following intracisternal administration of dexmedetomidine (1 μg · μl−1, 10 μL volume) or the stereoisomer levomedetomidine (1 μg· μL−1, 10 μL volume) in halothane-anesthetized rats, a subdural balloon catheter was inflated for 60 sec to produce ICH. Intracranial pressure, hemodynamic, left ventricular (LV) pressures and electrocardiographic (ECG) changes were recorded. Plasma and myocardial catecholamines and malondialdehyde (MDA) levels were measured.

Results

After levomedetomidine administration, subdural balloon inflation precipitated an increase in mean arterial pressure (149 ± 33% of baseline), heart rate (122 ± 19% of baseline), LV systolic pressure (LVP), LV end-diastolic pressure (LVEDP), LV developed pressure (LVDP), LV dP/dtmax and rate pressure product (RPP) (132 ± 19%, 260 ± 142%, 119 ± 15%, 126 ± 24% and 146 ± 33% of baseline value, respectively). ICH decelerated LVP fall (τ), as t increased from 7.75 ± 1. 1 to 14.37 ± 4.5 msec. Moreover, plasma norepinephrine levels were elevated ( 169 ± 50% of baseline) and there was the appearance of cardiac dysrhythmias and other ECG abnormalities. This response was transient and cardiac function deteriorated in a temporal manner. Intracisternal dexmedetomidine prevented the rise in plasma norepinephrine, blocked the ECG abnormalities, and preserved cardiac function. Moreover, dexmedetomidine attenuated the rise in MDA levels.

Conclusions

The results demonstrate that dexmedetomidine attenuates cardiac dysfunction associated with ICH. Our results provide evidence for the role of central sympathetic hyperactivity in the development of cardiac dysfunction associated with ICH.

Résumé

Objectif

Déterminer si !e biocage sympathique central par ia dexmédétomidine, un agoniste sélectif des récepteurs alpha2 adrénergiques, prévient ia dysfonction cardiaque associée à l’hypertension intracrânienne (HIC) chez un modèle rat.

Méthode

Après l’administration intradstemale de dexmédétomidine (1 μg · μL−1, volume de 10μL) ou du stéréoisomère lévomédétomidine (1 μg · μL−1, volume de 10 μL) chez des rats anesthésiés à l’halothane, un cathéter sous-dural à ballonnet a été gonflé pendant 60 s pour produire une HIC. La pression intracrânienne, l’hémodynamique, les pressions ventriculaires gauches (VG) et les changements électrocardiographiques (ECG) ont été enregistrés. Les niveaux plasmatiques et myocardiques de catécholamines et de malondialdéhyde (MDA) ont été mesurés.

Résultats

Après l’administration de lévomédétomidine, le gonflement du ballonnet sous-dural a précipité une hausse de la tension artérielle moyenne (149 ± 33 % des mesures de base), de la fréquence cardiaque (122 ± 19 % de la base), la tension systolique VG (TVG), la tension télédiastolique VG (TTDVG), la tension développée du VG (TDVG), dP/dtmax VG et le produit tension-fréquence cardiaque PJF (132 ± 19%, 260 ± 142 %, 119 ± 15 %, 126 ± 24% et 146 ± 33% des valeurs de base, respectivement). L’HIC a décéléré la chute de la TVG (τ), à mesure que t augmentait de 7,75 ± 1,1 à 14,37 ± 4,5 msec. De plus, les niveaux plasmatiques de norépinéphrine étaient élevés (169 ± 50 % de la base) et des dysrythmies cardiaques sont apparues avec d’autres anomalies ECG. La réaction a été une détérioration transitoire de la fonction cardiaque d’une manière temporelle. La dexmédétomidine intracisternale a empêché l’élévation de norépinéphrine plasmatique, bloqué les anomalies ECG et préservé la fonction cardiaque. La dexmédétomidine a diminué la hausse des niveaux de MDA.

Conclusion

Les résultats démontrent que la dexmédétomidine atténue la dysfonction cardiaque associée à HIC. Ils mettent en évidence le rôle de l’hyperactivité sympathique centrale dans le développement de dysfonction cardiaque associée à l’HIC.

This is a preview of subscription content, access via your institution.

References

  1. 1

    DujarMn KS, McCully RB, Wijdicks EF, et al. Myocardial dysfunction associated with brain death: clinical, echocardiographic, and pathologic features. J Heart Lung Transplant 2001; 20: 350–7.

    Article  Google Scholar 

  2. 2

    Huttemann E, Schelenz C, Chatzinikolaou K, Reinhart K. Left ventricular dysfunction in lethal severe brain injury: impact of transesophageal echocardiography on patient management. Intensive Care Med 2002; 28: 1084–8.

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Bratton SL, Davis RL. Acute lung injury in isolated traumatic brain injury. Neurosurgery 1997; 40: 707–12.

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Gilbert EM, Krueger SK, Murray JL, et al. Echocardiographic evaluation of potential cardiac transplant donors. J Thorac Cardiovasc Surg 1988; 95: 1003–7.

    CAS  PubMed  Google Scholar 

  5. 5

    Busson M, N’Doye P, Benoit G, et al. Donor factors influencing organ transplant prognosis. Transplant Proc 1995; 27: 1662–4.

    CAS  PubMed  Google Scholar 

  6. 6

    Nygaard CE, Townsend RN, Diamond DL. Organ donor management and organ outcome: a 6-year review from a level I trauma center. J Trauma 1990; 30: 728–32.

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Tsai FC, Marelli D, Bresson J, et al. Use of hearts transplanted from donors with atraumatic intracranial bleeds. J Heart Lung Transplant 2002; 21: 623–8.

    PubMed  Article  Google Scholar 

  8. 8

    Novitzky D, Wicomb WN, Cooper DK, Rose AG, Fraser RC, Barnard CN. Electrocardiographic, hemodynamic and endocrine changes occuring during experimental brain death in the Chacma baboon. Heart Transplant 1984; 4: 63–9.

    Google Scholar 

  9. 9

    Shanlin RJ, Sole MJ, Rahimifar M, Tator CH, Factor SM. Increased intracranial pressure elicits hypertension, increased sympathetic activity, electrocardiographic abnormalities and myocardial damage in rats. J Am Coll Cardiol 1988; 12: 727–36.

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Graf CJ, Rossi NP. Catecholamine response to intracranial hypertension. J Neurosurg 1978; 49: 862–8.

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Novitzky D, Rhodin J, Cooper DK, Te T, Min KW, DeBault L. Ultrastructure changes associated with brain death in the human donor heart. Transpl Int 1997; 10: 24–32.

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Novitzky D, Wicomb WN, Cooper DK, Rose AG, Reichart B. Prevention of myocardial injury during brain death by total cardiac sympathectomy in the Chacma baboon. Ann Thorac Surg 1986; 41: 520–4.

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Shivalkar B, Van Loon J, Wieland W, et al. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation 1993; 87: 230–9.

    CAS  PubMed  Article  Google Scholar 

  14. 14

    White M, Wiechmann RJ, Roden RL, et al. Cardiac ß- adrenergic neuroeffector systems in acute myocardial dysfunction related to brain injury. Evidence for catecholamine-mediated myocardial damage. Circulation 1995; 92: 2183–9.

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Rona G. Catecholamine cardiotoxicity (Editorial). J Mol Cell Cardiol 1985; 17: 291–306.

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Dampney RA, Kumada M, Reis DJ. Central neural mechanisms of the cerebral ischemic response. Characterization, effect of brainstem and cranial nerve transections, and simulation by electrical stimulation of restricted regions of medulla oblongata in rabbit. Circ Res 1979; 44: 48–62.

    Article  Google Scholar 

  17. 17

    Dampney RA, Moon FA. Role of ventrolateral medulla in vasomotor response to cerebral ischemia. Am J Physiol 1980; 239: H349–58.

    CAS  PubMed  Google Scholar 

  18. 18

    Hong M, Milne B, Loomis C, Jhamandas K. Stereoselective effects of central α2-adrenergic agonist medetomidine on in vivo catechol activity in the rat rostral ventrolateral medulla (RVLM). Brain Res 1992; 592: 163–9.

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Punnen S, Urbanski R, Krieger AJ, Sapru HN. Ventrolateral medullary pressor area: site of hypotensive action of clonidine. Brain Res 1987; 422: 336–46.

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Cruickshank JM, Neil-Dwyer G, Degaute JP, et al. Reduction of stress/catecholamine-induced cardiac necrosis by beta1 — selective blockade. Lancet 1987; 2: 585–9.

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Hunt D, Gore I. Myocardial lesions following experimental intracranial hemorrhage: prevention with propranolol. Am Heart J 1972; 83: 232–6.

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Hall SR, Wang L, Milne B, Ford S, Hong M. Intrathecal lidocaine prevents cardiovascular collapse and neurogenic pulmonary edema in a rat model of acute intracranial hypertension. Anesth Analg 2002; 94: 948–53.

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Farber NE, Samso E, Staunton M, Schwabe D, Schmeling WT. Dexmedetomidine modulates cardiovascular responses to stimulation of central nervous system pressor sites. Anesth Analg 1999; 88: 617–24.

    CAS  PubMed  Google Scholar 

  24. 24

    Adler D, Nikolic SD, Sonnenblick EH, Tellin EL. Time to dP/dtmax, a preload-independent index of contractility: open-chest dog study. Basic Res Cardiol 1996; 91: 94–100.

    CAS  PubMed  Google Scholar 

  25. 25

    Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 1976; 58: 751–60.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26

    Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978; 52: 302–10.

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Clifton GL, Robertson CS, Kyper K, Taylor AA, Dhekne RD, Grossman RG. Cardiovascular response to severe head injury. J Neurosurg 1983; 59: 447–54.

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Powner DJ, Hendrich A, Nyhuis A, Strate R. Changes in serum catecholamine levels in patients who are brain dead. J Heart Lung Transplant 1992; 11: 1046–53.

    CAS  PubMed  Google Scholar 

  29. 29

    Herijgers P, Leunens V, Tjandra-Maga TB, Mubagwa K, Flameng W. Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines. Transplantation 1996; 62: 330–5.

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Di Pasquale G, Pinelli G, Andreoli A, Manini G, Grazi P, Tognetti F. Holter detection of cardiac arrhythmias in intracranial subarachnoid hemorrhage. Am J Cardiol 1987; 59: 596–600.

    PubMed  Article  Google Scholar 

  31. 31

    Yamour BJ, Sridharan MR, Rice JF, Flowers NC. Electrocardiographic changes in cerebrovascular hemorrhage. Am Heart J 1980; 99: 294–300.

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Gutteridge JM, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 1990; 15: 129–35.

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Folden DV, Gupta A, Sharma AC, Li SY, Saari JT, Ren J. Malondialdehyde inhibits cardiac contractile function in ventricular myocytes via a p38 mitogen-activated protein kinase-dependent mechanism. Br J Pharmacol 2003; 139: 1310–6.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. 34

    Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens 2000; 18: 655–73.

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Rupp H, Dhalla KS, Dhalla NS. Mechanisms of cardiac cell damage due to catecholamines: significance of drugs regulating central sympathetic outflow. J Cardiovasc Pharmacol 1994; 24(Suppl 1): S16–24.

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Hori M, Gotoh K, Kitakaze M, et al. Role of oxygenderived free radicals in myocardial edema and ischemia in coronary microvascular embolization. Circulation 1991; 84: 828–40.

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Kaneko M, Beamish RE, Dhalla NS. Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. Am J Physiol 1989; 256: H368–74.

    CAS  PubMed  Google Scholar 

  38. 38

    Kaneko M, Elimban V, Dhalla NS. Mechanism for depression of heart sarcolemmal Ca2+ pump by oxygen free radicals. Am J Physiol 1989; 257: H804–11.

    CAS  PubMed  Google Scholar 

  39. 39

    Tappia PS, Hata T, Hozaima L, Sandhu MS, Panagia V, Dhalla NS. Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport. Arch Biochem Biophys 2001; 387: 85–92.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louie Wang.

Additional information

Preliminary results of this study were previously presented at the 49th Annual Canadian Anesthesiologists’ Society (CAS) Meeting, June 1, 2002, Victoria, British Columbia, Canada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hall, S.R.R., Wang, L., Milne, B. et al. Central dexmedetomidine attenuates cardiac dysfunction in a rodent model of intracranial hypertension. Can J Anesth 51, 1025–1033 (2004). https://doi.org/10.1007/BF03018493

Download citation

Keywords

  • Mean Arterial Pressure
  • Brain Death
  • Dexmedetomidine
  • Intracranial Hypertension
  • Leave Ventricular Pressure