Skip to main content

Routine handling of propofol prevents contamination as effectively as does strict adherence to the manufacturer’s recommendations

Le maniement d’usage du propofol prévient la contamination aussi effectivement que la stricte adhésion aux recommandations du fabricant

Abstract

Purpose

Propofol is a potential vector of infection, because it contains no preservative. Thus, the manufacturer’s specific recommendations for preparing injections or infusions go beyond the guidelines commonly used in our operating rooms for preparing other iv drugs. The purpose of the present study was to determine whether in the daily routine of an operating theatre a modified propofol handling technique can prevent contamination as effectively as do the manufacturer’s handling recommendations.

Methods

A total of 160 consecutive neurosurgical patients were allocated to either Group I (manufacturer’s handling recommendations: i.e., 1) disinfecting propofol vials and ampoules before filling syringes; 2) replacing empty syringes; 3) discarding all material at the end of surgery); or Group II (modified propofol handling protocol: i.e., I) refilling empty syringes; 2) renewing only the infusion line to the patient).

Results

Total contamination rates were comparable in both groups (Group I: 14/160 (8.75%), Group II: 13/160 (8.13%) (χ2 = 0.074; P = 0.96). Frequency of contamination was not different between groups; either in sample I taken at the beginning of the procedure, (Group I: 5/80 (6.25%) vs Group II: 6/80 (7.5%); χ2 = 0.098; P = 0.76) or in sample 2, taken at the end, (Group I: 9/80 (11.25%) vs Group II: 7/80 (8.75%); χ2 = 0.278; P = 0.598).

Conclusion

We conclude that in the daily routine of the operating theatre following a modified propofol handling protocol prevents contamination of propofol syringes as effectively as does adhering to the manufacturer’s specific handling recommendations. However, neither of the tested guidelines completely prevented contamination.

Résumé

Objectif

Le propofol, ne contenant aucun agent de conservation, est un vecteur potentiel d’infection. C’est pourquoi les recommandations spécifiques du fabricant au sujet de la préparation d’injections ou de perfusions vont au delà des directives habituellement suivies dans nos salles d’opération pour la préparation d’autres médicaments intraveineux. Nous avons voulu déterminer si, en modifiant le maniement du propofol en salle d’opération, nous pouvions prévenir la contamination aussi efficacement qu’en suivant à la lettre les recommandations du fabricant.

Méthode

Un total de 160 patients successifs de neurochirurgie ont été répartis en deux groupes. Pour le Groupe I on a suivi les recommandations du fabricant en 1) désinfectant les flacons et les ampoules de propofol avant de remplir les seringues; 2) remplaçant les seringues vides; 3) jetant tout le matériel à la fin de l’intervention chirurgicale. Pour le Groupe II, on a modifié le maniement du propofol en 1) remplissant les seringues vides et 2) en renouvelant seulement les tubulures à perfusion des patients.

Résultats

Les taux de contamination totale sont comparables : 14/160 (8,75 %) dans le Groupe I et 13/160 (8,13 %) dans le Groupe II (χ2 = 0,074; P = 0,96). La fréquence de contamination ne diffère pas d’un groupe à l’autre, pour l’échantillon I prélevé au début de l’opération (Groupe I : 5/80 (6,25 %) vs Groupe II : 6/80 (7,5 %); χ2 = 0,098; P = 0,76) ou l’échantillon 2 à la fin (Groupe I : 9/80 (11,25 %)vs Groupe II : 7/80 (8,75 %); χ2 = 0,278; P = 0,598).

Conclusion

Lusage quotidien d’un protocole modifié de maniement du propofol en salle d’opération prévient aussi efficacement la contamination des seringues que l’adhésion aux recommandations spécifiques du fabricant. Aucune des directives testées n’a permis d’éliminer complètement la contamination.

References

  1. Bennett SN, McNeil MM, Bland LA, et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 1995; 333: 147–54.

    PubMed  Article  CAS  Google Scholar 

  2. Carr S, Waterman S, Rutherford G, et al. Postsurgical infections associated with an extrinsically contaminated intravenous anesthetic agent-California, Illinois, Maine, and Michigan. MMWR 1990; 39: 426–33.

    Google Scholar 

  3. Bach A, Motsch J. Infectious risks associated with the use of propofol. Acta Anaesthesiol Scand 1996; 40: 1189–96.

    PubMed  CAS  Google Scholar 

  4. McNeil MM, Lasker BA, Lott TJ, Jarvis WR. Postsurgical Candida albicans infections associated with an extrinsically contaminated intravenous anesthetic agent. J Clin Microbiol 1999; 37: 1398–403.

    PubMed  CAS  Google Scholar 

  5. Veber B, Gachot B, Bedos JP, Wolff M. Severe sepsis after intravenous injection of contaminated propofol (Letter). Anesthesiology 1994; 80: 712–3.

    PubMed  Article  CAS  Google Scholar 

  6. Arduino MJ, Bland LA, McAllister SK, et al. Microbial growth and endotoxin production in the intravenous anesthetic propofol. Infect Control Hosp Epidemiol 1991; 12: 535–9.

    PubMed  CAS  Google Scholar 

  7. Kuehnert MJ, Webb RM, Jochimsen EM, et al. Staphylococcus aureus bloodstream infections among patients undergoing electroconvulsive therapy traced to breaks in infection control and possible extrinsic contamination by propofol. Anesth Analg 1997; 85: 420–5.

    PubMed  Article  CAS  Google Scholar 

  8. Berry CB, Gillespie T, Hood J, Scott NB. Growth of micro-organisms in solutions of intravenous anaesthetic agents. Anaesthesia 1993; 48: 30–2.

    PubMed  Article  CAS  Google Scholar 

  9. Sosis MB, Braverman B, Villaflor E. Propofol, but not thiopental, supports the growth of Candida albicans. Anesth Analg 1995; 81: 132–4.

    PubMed  Article  CAS  Google Scholar 

  10. Sosis MB, Braverman B. Growth of Staphylococcus aureus in four intravenous anesthetics. Anesth Analg 1993; 77: 766–8.

    PubMed  CAS  Google Scholar 

  11. Tessler M, Dascal A, Gioseffini S, Miller M, Mendelson J. Growth curves of Staphylococcus aureus, Candida albicans, and Moraxella osloensis in propofol and other media. Can J Anaesth 1992; 39: 509–11.

    PubMed  CAS  Google Scholar 

  12. Daily MJ, Dickey JB, Packo KH. Endogenous Candida endophthalmitis after intravenous anesthesia with propofol. Arch Ophthalmol 1991; 109: 1081–4.

    PubMed  CAS  Google Scholar 

  13. Graystone S, Wells MF, Earrell DJ. Do intensive care drug infusions support microbial growth? Anaesth Intensive Care 1997; 25: 640–2.

    PubMed  CAS  Google Scholar 

  14. Farrington M, McGinnes J, Matthews I, Park GR. Do infusions of midazolam and propofol pose an infection risk to critically ill patients? Br J Anaesth 1994; 72: 415–7.

    PubMed  Article  CAS  Google Scholar 

  15. Crowther J, Hrazdil J, Jolly DE, Galbraith JC, Greacen M, Grace M. Growth of microorganisms in propofol, thiopental, and a 1:1 mixture of propofol and thiopental. Anesth Analg 1996; 82: 475–8.

    PubMed  Article  CAS  Google Scholar 

  16. Gajraj RJ, Hodson MJ, Gillespie JA, Kenny GNC, Scott NB. Antibacterial activity of lidocaine in mixtures with Diprivan. Br J Anaesth 1998; 81: 444–8.

    PubMed  CAS  Google Scholar 

  17. Wachowski I, Jolly DE, Hrazdil J, Galbraith JC, Greacen M, Clanachan AS. The growth of microorganisms in propofol and mixtures of propofol and lidocaine. Anesth Analg 1999; 88: 209–12.

    PubMed  Article  CAS  Google Scholar 

  18. Vidovich MI, Peterson LR, Wong HT. The effect of lidocaine on bacterial growth in propofol. Anesth Analg 1999; 88: 936–8.

    PubMed  Article  CAS  Google Scholar 

  19. Sakuragi T, Yanagisawa K, Shirai Y, Dan K. Growth of Escherichia coli in propofol, lidocaine, and mixtures of propofol and lidocaine. Acta Anaesthesiol Scand 1999; 43: 476–9.

    PubMed  Article  CAS  Google Scholar 

  20. Hart B. ‘Diprivan’: a change of formulation (Letter). Eur J Anaesthesiol 2000; 17: 71–3.

    PubMed  Article  CAS  Google Scholar 

  21. Culver DH, Horan EC, Gaynes RP, et al., National Nosocomial Infections Surveillance System. Surgical wound infection rates by wound class, operative procedure, and patient risk index. Am J Med 1991; 91(suppl 3B): 152S-7S.

    PubMed  Article  CAS  Google Scholar 

  22. Haley RW, Culver DH, Morgan WM, White JW, Emori EG, Hooton EM. Identifying patients at high risk of surgical wound infection. A simple multivariate index of patient susceptibility and wound contamination. Am J Epidemiol 1985; 121: 206–15.

    PubMed  CAS  Google Scholar 

  23. Haley RW, Culver DH, White JW, Morgan WM, Emori TG. The nationwide nosocomial infection rate. A new need for vital statistics. Am J Epidemiol 1985; 121: 159–67.

    PubMed  CAS  Google Scholar 

  24. Nichols RL, Smith JW. Bacterial contamination of an anesthetic agent (Editorial). N Engl J Med 1995; 333: 184–5.

    PubMed  Article  CAS  Google Scholar 

  25. Hughes S. American Society of Anesthesiologists (ASA): Recommendations for Infection Control for the Practice of Anesthesiology, (2nd ed.). http://www.asahq.org/ProfInfo/Infection/Infection_ TOC.html 2001.

  26. Pearson ML. Centers for Disease Control (CDC): Guideline for prevention of intravascular device-related infections. Part 1. Intravascular device-related infections: an overview. The Hospital Infection Control Practices Advisory Committee. Am J Infect Control 1996; 24: 262–77.

    PubMed  Article  CAS  Google Scholar 

  27. Zacher AN, Zornow MH, Evans G. Drug contamination from opening glass ampules. Anesthesiology 1991; 75: 893–5.

    PubMed  Article  CAS  Google Scholar 

  28. Kempen PM, Sulkowski E, Sawyer SA. Glass ampules and associated hazards. Crit Care Med 1989; 17: 812–3.

    PubMed  Article  CAS  Google Scholar 

  29. Rosenberg AD, Bernstein DB, Bernstein RL, Skovron ML, Ramanathan S, Turndorf H. Accidental needlesticks: do anesthesiologists practice proper infection control precautions? Am J Anesthesiol 1995; 22: 125–32.

    PubMed  CAS  Google Scholar 

  30. Lessard MR, Trépanier CA, Gourdeau M, Denault PH. A microbiological study of the contamination of the syringes used in anaesthesia practice. Can J Anaesth 1988; 35: 567–9.

    PubMed  CAS  Google Scholar 

  31. Magee L, Godsiff L, Matthews I, Farrington M, Park GR. Anaesthetic drugs and bacterial contamination. Eur J Anaesthesiol 1995; 12(Suppl. 12): 41–3.

    CAS  Google Scholar 

  32. Warwick JP, Blake D. Drawing up propofol (Letter). Anaesthesia 1994; 49: 172.

    PubMed  Article  CAS  Google Scholar 

  33. McLeod GA, Pace N, Inglis MD. Bacterial growth in propofol (Letter). Br J Anaesthesia 1991; 67: 665–6.

    Google Scholar 

  34. Downs GJ, Haley PR, Parent JB. Propofol: can a single ampule be used for multiple patients? (Letter). Anesthesiology 1991; 74: 1156–7.

    PubMed  Article  CAS  Google Scholar 

  35. Bach A, Motsch J, Schmidt H, et al. In-use contamination of propofol. A clinical study. Eur J Anaesthesiol 1997; 14: 178–83.

    PubMed  Article  CAS  Google Scholar 

  36. McHugh GJ, Roper GM. Propofol emulsion and bacterial contamination. Can J Anaesth 1995; 42: 801–4.

    PubMed  CAS  Google Scholar 

  37. Webb SAR, Roberts B, Breheny FX, Golledge CL, Cameron PD, Van Heerden PV. Contamination of propofol infusions in the intensive care unit: incidence and clinical significance. Anaesth Intensive Care 1998; 26: 162–4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kolbitsch.

Additional information

Financial support: none

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lorenz, I.H., Kolbitsch, C., Lass-Flörl, C. et al. Routine handling of propofol prevents contamination as effectively as does strict adherence to the manufacturer’s recommendations. Can J Anesth 49, 347–352 (2002). https://doi.org/10.1007/BF03017321

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03017321

Keywords

  • Infusion Line
  • Disodium Edetate
  • Infection Control Practice Advisory Committee
  • Empty Syringe
  • Hospital Infection Control Practice Advisory