Skip to main content

Flumazenil improves cognitive and neuromotor emergence and attenuates shivering after halothane-, enflurane- and isoflurane-based anesthesia

Le flumazénil améliore le retour de l’activité cognitive et neuromotrice et atténue les frissons après une anesthésie à base d’halothane, d’enflurane ou d’isoflurane

Abstract

Purpose

Tb conduct a randomized, placebo-controlled, double-blinded, clinical experiment testing the hypothesis that flumazenil, a benzodiazepine antagonist, may affect recovery from halothane-, enflurane- and isoflurane-based anesthesia.

Method

Patients who underwent surgery under N2O/O2 plus halothane (n = 100), enflurane (n = 100) or isoflurane (n = 70) anesthesia were administered flumazenil 1 mg or placebo upon emergence from anesthesia, and their postanesthesia vital signs, vigilance, neurological recovery, shivering, amnesia reversal, and general subjective feeling were assessed.

Results

A ten-point vigilance score showed better recovery of flumazenil-treated patients compared to those who received placebo (60-min after halothane anesthesia: 9.9 ± 0.1 vs 9.5 ± 0.2,P < 0.01 ; after enflurane: 10 ± 0vs 9.4 ± 0.2,P < 0.01; after isoflurane: 10.0 ± 0vs 9.3 ± 0.1,P < 0.01). Halothane- and enflurane-flumazenil-treated patients (but not isoflurane) reached a better neurological score (2.97 ± 0.05 or 3 ± 0) compared to placebo (2.8 ± 0.4 or 2.6 ± 0.4,P < 0.0l), respectively. Reversal of amnesia was superior in the flumazenil group at 60 min and at 24 hr postsurgery and more flumazenil patients rated recovery as “pleasant”. Flumazenil patients shivered less than placebo patients despite their lower core temperature (at 30 min: halothane: 11%vs 28%,P < 0.05; enflurane: 11 %vs 30%,P < 0.05; isoflurane: 17% for both groups).

Conclusion

Flumazenil improves recovery of high cortical and neuromotor functions following halothane, enflurane and isoflurane anesthesia, reduces shivering and improves the overall quality of emergence, including patients’ subjective feeling.

Résumé

Objectif

Réaliser une expérience clinique randomisée, contrôlée contre placebo en double insu, testant l’hypothèse selon laquelle le flumazénil, antagoniste des benzodiazépines, peut agir sur le retour à la conscience après une anesthésie à l’halothane, à l’enflurane ou à l’isoflurane.

Méthode

Les patients devant subir une intervention sous anesthésie avec du N2O/O2 et de l’halothane (n = 100), de l’enflurane (n = 100) ou de l’isoflurane (n = 70) ont reçu I mg de flumazénil ou un placebo au réveil. Les signes vitaux, la vigilance, la récupération neurologique, les frissons, le renversement de l’amnésie et les perceptions objectives générales ont été notés.

Résultats

Une cotation de la vigilance en dix points a montré une meilleure récupération des patients traités avec le flumazénil qu’avec le placebo (60 min après l’anesthésie à l’halothane: 9,9 ± 0,1 vs 9,5 ± 0,2, P < 001; après l’enflurane: 10 ± 0vs 9,4 ± 0,2, P < 0,01; après l’isoflurane: 10,0 ± 0 vs 9,3 ± 0,1, P < 0,01). Avec l’halothane, ou l’enflurane (mais non l’isoflurane), combiné au flumazénil, le score neurologique a été meilleur (2,97 ± 0,05 ou 3 ± 0) comparé à celui du placebo (2,8 ± 0,4 ou 2,6 ± 0,4, P < 0,01), respectivement. Le renversement de l’amnésie postopératoire a été supérieur avec le flumazénil à 60 min et à 24 h. Un plus grand nombre de patients traités avec le flumazénil a qualifié le réveil “d’agréable”. Il y a eu moins de frissons avec le flumazénil qu’avec le placebo, malgré la température centrale plus basse (à 30 min: halothane: 11 % vs 28%, P < 0,05; enflurane: 11 % vs 30%, P < 0,05; isoflurane: 17 % pour les deux groupes).

Conclusion

Le flumazénil améliore la récupération des fonctions cognitives et neuromotrices à la suite d’une anesthésie avec halothane, enflurane ou isoflurane. Il réduit les frissons et améliore la qualité du réveil, y compris les perceptions subjectives des patients.

References

  1. Rosenberg H, Clofine R, Bialik O. Neurologic changes during awakening from anesthesia. Anesthesiology 1981; 54: 125–30.

    PubMed  Article  CAS  Google Scholar 

  2. McCulloch PR, Milne B. Neurological phenomena during emergence from enflurane or isoflurane anaesthesia. Can J Anaesth 1990; 37: 739–42.

    PubMed  CAS  Google Scholar 

  3. Moody EJ, Suzdak PD, Paul SM, Skolnick P. Modulation of the benzodiazepine/gamma-aminobutyric acid receptor chloride channel complex by inhalation anesthetics. J Neurochem 1988; 51: 1386–93.

    PubMed  Article  CAS  Google Scholar 

  4. Bishop BE, Laverty R. Dose-dependent reduction by Ro 15-4513 in mice of the effects of ethanol and some other general depressant drugs. Eur J Pharmacol 1989; 162:265–71.

    PubMed  Article  CAS  Google Scholar 

  5. Cheng SC, Brunner EA. A neurochemical hypothesis for halothane anesthesia. Anesth Analg 1975; 54: 242–6.

    PubMed  Article  CAS  Google Scholar 

  6. Cheng SC, Brunner EA. Effects of anesthetic agents on synaptosomal GABA disposal. Anesthesiology 1981; 55: 34–40.

    PubMed  CAS  Article  Google Scholar 

  7. Gage PW, Robertson B. Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA1 pyramidal cells in rat hippocampus. Br J Pharmacol 1985; 85: 675–81.

    PubMed  CAS  Google Scholar 

  8. Jones MV, Brooks PA, Harrison NL. Enhancement of gamma-aminobutyric acid-activated Cl currents in cultured rat hippocampal neurones by three volatile anaesthetics. J Physiol Lond 1992; 449: 279–93.

    PubMed  CAS  Google Scholar 

  9. Geller E, Schiff B, Halpern P, Speiser Z, Cohen S. A benzodiazepine receptor antagonist improves emergence of mice from halothane anaesthesia. Neuropharmacology 1989; 28:271–4.

    PubMed  Article  CAS  Google Scholar 

  10. Weinger MB, Schreiber JE, Koob GE. Effects of two benzodiazepine inverse agonists, RO 15-4513 and FG 7142, on recovery from pentobarbital and halothane anesthesia in the rat. Pharmacol Biochem Behav 1990; 35: 889–5.

    PubMed  Article  CAS  Google Scholar 

  11. Miller DW, Yourick DL, Tessel RE. Antagonism of methoxyflurane-induced anaesthesia in rats by benzodiazepine inverse agonists. Eur J Pharmacol 1989; 173: 1–10.

    PubMed  Article  CAS  Google Scholar 

  12. Moody EJ, Skolnick P. The imidazobenzodiazepine Ro 15-4513 antagonizes methoxyflurane anaesthesia. Life Sci 1988; 43: 1269–76.

    PubMed  Article  CAS  Google Scholar 

  13. Geller E, Weinbrum A, Schiff B, et al. The effect of flumazenil on the process of recovery from halothane anaesthesia. Eur J Anaesthesiol 1988; Suppl 2: 151–3.

  14. Hunkeler W, Mohler H, Pieri L, et al. Selective antagonists of benzodiazepines. Nature 1981; 290: 514–6.

    PubMed  Article  CAS  Google Scholar 

  15. Weinbroum AA, Flaishon R, Sorkine P, Szold O, Rudick V. A risk-benefit assessment of flumazenil in the management of benzodiazepine overdose. Drug Saf 1997; 17: 181–96.

    PubMed  Article  CAS  Google Scholar 

  16. Weinbroum A, Halpern P, Geller E. The use of flumazenil in the management of acute drug poisoning—a review. Intensive Care Med 1991; 17 Suppl 1: S32–8.

    PubMed  Article  Google Scholar 

  17. Blanc VF, Haig M, Troli M, Sauve B. Computerized photo-plethysmography of the finger. Can J Anaesth 1993; 40: 271–8.

    PubMed  CAS  Google Scholar 

  18. Sellgren J, Ponten J, Wallin BG. Percutaneous recording of muscle nerve sympathetic activity during propofol, nitrous oxide, and isoflurane anesthesia in humans. Anesthesiology 1990; 73: 20–7.

    PubMed  Article  CAS  Google Scholar 

  19. Ereye E, Eournell A. Postoperative reversal of loss of vigilance following midazolam with the use of the antagonist flumazenil (Ro 15-1788). A comparative study with a placebo and the use of EEG-power spectra (German). Anaesthesist 1988; 37: 162–6.

    Google Scholar 

  20. Gillespie NA. The signs of anaesthesia. Anesth Analg Curr Res 1943; 22: 275–80.

    Google Scholar 

  21. Karr AF. Probablility. New York: Springer-Verlag Publishers, 1993: 12–4.

    Google Scholar 

  22. Hudson RJ, Stanski DR, Burch PG. Pharmacokinetics of methohexital and thiopental in surgical patients. Anesthesiology 1983; 59: 215–9.

    PubMed  Article  CAS  Google Scholar 

  23. Woerlee GM. Practical IV bolus kinetics and dynamics.In: Woerlee GM (Ed.). Kinetics and Dynamics of Intravenous Anaesthetics. The Netherlands: Kluwer Academic Publishers, 1992: 116–47.

    Google Scholar 

  24. Fassoulaki A, Sarantopoulos C, Papilas K. Flumazenil reduces the duration of thiopentone but not of propofol anaesthesia in humans. Can J Anaesth 1993; 40: 10–2.

    PubMed  CAS  Article  Google Scholar 

  25. Tanelian DL, Kosek P, Mody I, Maclver MB. The role of GABAA receptor / chloride channel complex in anesthesia. Anesthesiology 1993; 78: 757–76.

    PubMed  Article  CAS  Google Scholar 

  26. Zacny JP, Yajnik S, Coalson D, et al. Flumazenil may attenuate some subjective effects of nitrous oxide in humans: a preliminary report. Pharmacol Biochem Behav 1995; 51: 815–9.

    PubMed  Article  CAS  Google Scholar 

  27. Quock RM, Wetzel PJ, Maillefer RH, Hodges BL, Curtis BA, Czech DA. Benzodiazepine receptor-mediated behavioral effects of nitrous oxide in the rat social interaction test. Pharmacol Biochem Behav 1993; 46: 161–5.

    PubMed  Article  CAS  Google Scholar 

  28. Schwieger IM, Szlam F, Hug CC Jr. Absence of agonistic or antagonistic effect of flumazenil (Ro 15-1788) in dogs anesthetized with enflurane, isoflurane, or fentanyl-enflurane. Anesthesiology 1989; 70: 477–80.

    PubMed  Article  CAS  Google Scholar 

  29. Greiner AS, Larach DR. The effect of benzodiazepine receptor antagonism by flumazenil on the MAC of halothane in the rat. Anesthesiology 1989; 70: 644–8.

    PubMed  Article  CAS  Google Scholar 

  30. Schwartz AE, Maneksha FR, Kanchuger MS, Sidhu US, Poppers PJ. Flumazenil decreases the minimum alveolar concentration isoflurane in dogs. Anesthesiology 1989; 70: 764–6.

    PubMed  Article  CAS  Google Scholar 

  31. Hansen TD, Warner DS, Todd MM, Baker MT, Jensen NF. The influence of inhalational anesthetics on in vivo and in vitro benzodiazepine receptor binding in the rat cerebral cortex. Anesthesiology 1991; 74: 97–104.

    PubMed  Article  CAS  Google Scholar 

  32. Schwieger IM, Hall RI, Hug CC Jr. Less than additive antinociceptive interaction between midazolam and fentanyl in enflurane-anesthetized dogs. Anesthesiology 1991; 74: 1060–6.

    PubMed  Article  CAS  Google Scholar 

  33. Flaishon R, Halpern P, Sorkine P, et al. Cross-sensitivity between isoflurane and diazepam: evidence from a bidirectional tolerance study in mice. Brain Res 1999; 815: 287–3.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi A. Weinbroum.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weinbroum, A.A., Geller, E. Flumazenil improves cognitive and neuromotor emergence and attenuates shivering after halothane-, enflurane- and isoflurane-based anesthesia. Can J Anaesth 48, 963–972 (2001). https://doi.org/10.1007/BF03016585

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03016585

Keywords

  • Isoflurane
  • Halothane
  • Enflurane
  • Flumazenil
  • Placebo Patient