Adherence to simple and effective measures reduces the incidence of ventilator-associated pneumonia

  • Alan D. Baxter
  • Jill Allan
  • Johane Bedard
  • Sue Malone-Tucker
  • Sharon Slivar
  • Mike Langill
  • Marc Perreault
  • Owen Jansen
Neuroanesthesia and Intensive Care

Abstract

Purpose

Several modalities have been shown to be individually effective in reducing the incidence (and hence associated morbidity, mortality, and costs) of ventilator-associated pneumonia, but their implementation into clinical practice is inconsistent. We introduced an intensive care unit protocol and measured its effect on ventilator-associated pneumonia.

Methods

A multidisciplinary team constructed a multifaceted protocol incorporating low risk and low cost strategies, many of which had independent advantages of their own. Some components were already in use, and their importance was emphasized to improve compliance. New strategies included elevation of the head of the bed, transpyloric enteral feeding, and antiseptic mouthwash. The approach to implementation and maintenance included education, monitoring, audits and feedback to encourage compliance with the protocol.

Results

The implementation of this prevention protocol reduced the incidence of ventilator-associated pneumonia from a baseline of 94 cases per year or 26.7 per 1,000 ventilator days to 51.3 per year or 12.5 per 1,000 ventilator days, i.e., about 50% of the preprotocol rate (P < 0.0001).

Conclusion

Adherence to simple and effective measures can reduce the incidence of ventilator-associated pneumonia. The protocol described was inexpensive and effective, and estimated savings are large. Implementation and maintenance of gains require a multidisciplinary approach, with buy-in from all team members, and ongoing monitoring, education, and feedback to the participants.

L’observation de mesures simples et efficaces réduit l’incidence de pneumonie associée à la ventilation mécanique

Résumé

Objectif

Certaines modalités sont isolément efficaces pour réduire l’incidence (et de là, la morbidité, la mortalité et les coûts associés) de la pneumonie associée à la ventilation mécanique, mais leur application en pratique clinique est irrégulière. Un protocole a été adopté à l’unité des soins intensifs et son effet mesuré sur la pneumonie associée à la ventilation mécanique.

Méthode

Une équipe multidisciplinaire a élaboré un protocole à plusieurs facettes qui comprenait des stratégies peu coûteuses et à faible risque, dont beaucoup ont en elles-mêmes des avantages indépendants. Quelques composantes étaient déjà utilisées et leur importance a été accentuée pour améliorer la collaboration. Les nouvelles stratégies incluaient l’élévation de la tête du lit, l’alimentation entérale transpylorique et un bain de bouche antiseptique. La formation, le monitorage, les audits et la rétroaction ont encouragé l’application et le maintien du protocole.

Résultats

L’application du protocole de prévention a réduit l’incidence de pneumonie associée à la ventilation mécanique de 94 cas par année ou de 26,7 par 1 000 jours de ventilation à 51,3 par année ou 12,5 par 1 000 jours de ventilation, ou environ 50 % du taux préprotocole (P < 0,0001).

Conclusion

Des mesures simples et efficaces peuvent réduire l’incidence de pneumonie associée à la ventilation mécanique. Le protocole décrit est peu coûteux, mais efficace, et présente d’importantes économies estimées. L’application et le maintien des gains exigent une approche multidisciplinaire et une adhésion collective de tous les membres de l’équipe, une formation et un monitorage permanents et des réactions aux participants.

References

  1. 1.
    Craven DE, Kunches LM, Lichtenberg DA, et al. Nosocomial infection and fatality in medical and surgical intensive care unit patients. Arch Intern Med 1988; 148:1161–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Torres A, Aznar E, Gatell JM, et al. Incidence, risk, and prognostic factors of nosocomial pneumonia in mechanically ventilated patients. Am Rev Respir Dis 1990; 142:523–8.PubMedGoogle Scholar
  3. 3.
    Kollef MH, Silver P, Murphy DM, Trovillion E. The effect of late-onset ventilator-associated pneumonia in determining patient mortality. Chest 1995; 108:1655–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Heyland DK, Cook DJ, Griffith L, Keenan SP, Brun-Buisson C. The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. Canadian Critical Care Trials Group. Am J Respir Crit Care Med 1999; 159:1249–56.PubMedGoogle Scholar
  5. 5.
    Kollef MH. The prevention of ventilator-associated pneumonia. N Engl J Med 1999; 340:627–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Heyland DK, Cook DJ, Dodek PM. Prevention of ventilator- associated pneumonia: current practice in Canadian intensive care units. J Crit Care 2002; 17:161–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Anonymous. Hospital-acquired pneumonia in adults: diagnosis, assessment of severity, initial antimicrobial therapy, and preventative strategies. A consensus statement. Am J Respir Crit Care Med 1995; 153: 1711–25.Google Scholar
  8. 8.
    Goldmann DA, Weinstein RA, Wenzel RP, et al. Strategies to prevent and control the emergence and spread of antimicrobial resistant microorganisms in hospitals. A challenge to hospital leadership. Workshop to Prevent and Control the Emergence and Spread of Antimicrobial Microorganisms in Hospitals. JAMA 1996; 275:234–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Doebbeling BN, Stanley GL, Sheetz CT, et al. Comparative efficacy of alternative hand-washing agents in reducing nosocomial infections in intensive care units. N Engl J Med 1992; 327:88–93.PubMedGoogle Scholar
  10. 10.
    Kollef MH, Shapiro SD, Fraser VJ, et al. Mechanical ventilation with or without 7-day circuit changes. A randomized controlled trial. Ann Intern Med 1995; 123:168–74.PubMedGoogle Scholar
  11. 11.
    Tablan OC, Anderson LJ, Arden NH, Breiman RF, Butler JC, McNeil MM. Guideline for prevention of nosocomial pneumonia. The Hospital Infection Control Practices Advisory Committee. Centres for Disease Control and Prevention. Infect Control Hosp Epidemiol 1994; 15:587–627.PubMedCrossRefGoogle Scholar
  12. 12.
    Torres A, Gatell JM, Aznar E, et al. Re-intubation increases the risk of nosocomial pneumonia in patients needing mechanical ventilation. Am J Respir Crit Care Med 1995; 152:137–41.PubMedGoogle Scholar
  13. 13.
    Holzapfel L, Chevret S, Madinier G, et al. Influence of long-term oro- or nasotracheal intubation on nosocomial maxillary sinusitis and pneumonia: results of a prospective, randomized, clinical trial. Crit Care Med 1993; 21:1132–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Rello J, Sonora R, Jubert P, Artigas A, Rue M, Valles J. Pneumonia in intubated patients: role of respiratory airway care. Am J Respir Crit Care Med 1996; 154:111–5.PubMedGoogle Scholar
  15. 15.
    Nierderman MS, Mantovani R, Schoch P, Papas J, Fein AM. Patterns and routes of tracheobronchial colonization in mechanically ventilated patients. The role of nutritional status in colonization of the lower airway by Pseudomonas species. Chest 1989; 95:155–61.CrossRefGoogle Scholar
  16. 16.
    Kollef MH, Shapiro SD, Boyd V, et al. A randomized clinical trial comparing an extended-use hygroscopic condenser humidifier with heated-water humidification in mechanically ventilated patients. Chest 1998; 113:759–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Combes P, Fauvage B, Oleyer C. Nosocomial pneumonia in mechanically ventilated patients, a prospective randomised evaluation of the Stericath closed suctioning system. Intensive Care Med 2000; 26:878–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Yavagal DR, Karnad DR, Oak JL. Metoclopramide for preventing pneumonia in critically ill patients receiving enteral tube feeding: a randomized controlled trial. Crit Care Med 2000; 28:1408–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Torres A, Serra-Batlles J, Ros E, et al. Pulmonary aspiration of gastric contents in patients receiving mechanical ventilation: the effect of body position. Ann Intern Med 1992; 116:540–3.PubMedGoogle Scholar
  20. 20.
    Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 1999; 354:1851–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Kortbeek JB, Haigh PL, Doig C. Duodenal versus gastric feeding in ventilated blunt trauma patients: a randomized controlled trial. J Trauma 1999; 46:992–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Cook DJ, Fuller HD, Guyatt GH, et al. Risk factors for gastrointestinal bleeding in critically ill patients. Canadian Critical Care Trials Group. N Engl J Med 1994; 330:377–81.PubMedCrossRefGoogle Scholar
  23. 23.
    DeRiso AJ II,Ladowski JS, Dillion TA, Justice JW, Peterson AC. Chlorhexidine gluconate 0.12% oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery. Chest 1996; 109:1556–61.CrossRefGoogle Scholar
  24. 24.
    Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165:867–903.PubMedGoogle Scholar
  25. 25.
    Craven DE, Steger KA. Epidemiology of nosocomial pneumonia. New perspectives on an old disease. Chest 1995; 108(Suppl):1S-16S.PubMedCrossRefGoogle Scholar
  26. 26.
    Dodek P, Keenan S, Cook D, et al. Evidenced-based clinical practice guideline for the prevention of ventilator- associated pneumonia. Canadian Critical Care Trials Group and the Canadian Critical Care Society. Ann Intern Med 2004; 141:305–13.PubMedGoogle Scholar
  27. 27.
    McKay CA, Speers M. AACN practice alert. Ventilator associated pneumonia. AACN NEWS, 2004; 21:2. Available from URL; www.AACN.org.Google Scholar
  28. 28.
    Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. Canadian Critical Care Clinical Practice Guidelines Committee. JPEN J Parenter Enteral Nutr 2003; 27:355–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Valles J, Artigas A, Rello J, et al. Continuous aspiration of subglottic secretions in preventing ventilator-associated pneumonia. Ann Intern Med 1995; 122:179–86.PubMedGoogle Scholar
  30. 30.
    Fink MP, Helsmoortel CM, Stein KL, Lee PC, Cohn SM. The efficacy of an oscillating bed in the prevention of lower respiratory tract infection in critically ill victims of blunt trauma. A prospective study. Chest 1990; 97:132–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Boyce JM, Potter-Bynoe G, Dziobek L, Solomon SL. Nosocomial pneumonia in Medicare patients. Hospital costs and reimbursement patterns under the prospective payment system. Arch Intern Med 1991; 151:1109–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Shorr AF, O’Malley PG. Continuous subglottic suctioning for the prevention of ventilator-associated pneumonia. Potential economic implications. Chest 2001; 119:228–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Warren DK, Shukla SJ, Olsen MA, et al. Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center. Crit Care Med 2003; 31:1312–7.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2005

Authors and Affiliations

  • Alan D. Baxter
    • 1
    • 2
  • Jill Allan
    • 3
  • Johane Bedard
    • 3
  • Sue Malone-Tucker
    • 3
  • Sharon Slivar
    • 3
  • Mike Langill
    • 3
  • Marc Perreault
    • 4
  • Owen Jansen
    • 3
  1. 1.Departments of Critical CareThe Ottawa Hospital, General CampusOttawaCanada
  2. 2.Departments of Anesthesia & Critical CareThe Ottawa Hospital, General CampusOttawaCanada
  3. 3.Departments of Nursing The Ottawa HospitalGeneral CampusOttawaCanada
  4. 4.Departments of Pharmacy The Ottawa HospitalGeneral CampusOttawaCanada

Personalised recommendations