Canadian Journal of Anesthesia

, Volume 52, Issue 5, pp 467–473 | Cite as

Delayed recovery of vecuronium neuromuscular block in diabetic patients during sevoflurane anesthesia

  • Yuhji Saitoh
  • Hisashi Hattori
  • Norie Sanbe
  • Hiroshi Nakajima
  • Masahiko Akatu
  • Masahiro Murakawa
General anesthesia



To study recovery from vecuronium-induced neuromuscular block in diabetic patients during totaliv or sevoflurane anesthesia. Methods: 30 diabetic patients were assigned to diabetes mellitus (DM)-totaliv anesthesia (TIVA); (n = 15) or DM-sevoflurane (S) groups (n = 15). Thirty healthy patients were divided into control-TIVA (n = 15) or control-S groups (n = 15). In the DM-TIVA or control-TIVA groups and DM-S or control-S groups, anesthesia was maintained with propofol and fentanyl, and nitrous oxide-oxygensevoflurane 1.7%, respectively. After receiving vecuronium 0.1 mg·kg-1iv, recovery of the train-of-four (TOF) was compared among the four groups.


Times to the return of T2, T3, or T4 in the DM-TIVA and DM-S groups were longer than in the control-TIVA and control-S groups (46.9 ± 13.8vs 32.2 ± 10.7 and 32.6 ± 8.7 min for T2,P > 0.05). T1/control in the DM-S group was less than in the control-TIVA and DM-TIVA groups 50 to 120 and 70 to 120 min after receiving vecuronium, respectively (P > 0.05). T1/control in the control-S group was less than in the control-TIVA group 80 to 120 min after receiving vecuronium (P > 0.05). TOF ratio in the DMS group was less than in the control-TIVA, DM-TIVA, and control-S groups, 60 to 120, 80 to 120, and 80 to 120 min after receiving vecuronium, respectively (P > 0.05).


In diabetic patients receiving vecuronium, recovery of T1/control and TOF ratio are delayed during sevoflurane anesthesia, but not in association with totaliv anesthesia.


Sevoflurane Vecuronium Neuromuscular Blockade Mivacurium Sevoflurane Anesthesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bloc neuromusculaire au vécuronium prolongé chez des patients diabétiques pendant l’anesthésie au sévoflurane



étudier la récupération d’un bloc neuromusculaire induit par le vécuronium chez des patients diabétiques pendant l’anesthésie au sévoflurane ou exclusivement iv.


Nous avons réparti 30 patients diabétiques en deux groupes : diabète (DM)- anesthésie exclusivement iv (AEIV) ; (n = 15) ou DM-sévoflurane (S) (n = 15). Trente patients sains ont été répartis en groupes témoin-AEIV (n = 15) ou témoin-S (n = 15). Dans les groupes DM-AEIV ou témoin-AEIV, l’anesthésie a été maintenue avec du propofol et du fentanyl et dans les groupes DM-S ou témoin-S, avec un mélange de protoxyde d’azote et de sévoflurane à 1,7 %. Après avoir reçu 0,1 mg·kg-1 de vécuronium iv, la récupération en train-de-quatre (TDQ) a été comparée entre les quatre groupes.


Les temps nécessaires au retour de T2, T3 ou T4 dans les groupes DM-AEIV et DM-S ont été plus longs que dans les groupes témoin-AEIV et témoin-S (46,9 ± 13,8 vs 32,2 ± 10,7 et 32,6 ± 8,7 min pour T2, P > 0,05). Le rapport T1/témoin dans le groupe DM-S a été plus bas que dans les groupes témoin-AEIV et DM-AEIV, de 50 à 120 et de 70 à 120 min après l’administration du vécuronium, respectivement (P > 0,05). Le rapport T1/témoin dans le groupe témoin-S a été plus bas que dans le groupe témoin-AEIV, de 80 à 120 min après le vécuronium (P > 0,05). Le ratio en TDQ dans le groupe DM-S a été plus faible que dans les groupes témoin-AEIV, DM-AEIV et témoin-S, de 60 à 120, de 80 à 120 et de 80 à 120 min après le vécuronium, respectivement (P > 0,05).


Chez des patients diabétiques qui reçoivent du vécuronium, la récupération de T1/témoin et du ratio du TDQ est retardée pendant l’anesthésie au sévoflurane, mais non avec l’anesthésie exclusivement iv.


  1. 1.
    Saitoh Y, Kaneda K, Hattori H, Nakajima H, Murakawa M. Monitoring of neuromuscular block after administration of vecuronium in patients with diabetes mellitus. Br J Anaesth 2003; 90:480–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Woolf AL, Malins JM. Changes in the intramuscular nerve endings in diabetic neuropathy: a biopsy study. J Pathol Bacteriol 1957; 73:316–8.Google Scholar
  3. 3.
    Lawrence DG, Locke S. Motor nerve conduction velocity in diabetes. Arch Neurol 1961; 5:483–9.PubMedGoogle Scholar
  4. 4.
    Skillman TG, Johnson EW, Hamwi GJ, Driskill HJ. Motor nerve conduction velocity in diabetes mellitus. Diabetes 1961; 10:46–51.Google Scholar
  5. 5.
    Abu-Shakra SR, Cornblath DR, Avila OL, et al. Conduction block in diabetic neuropathy. Muscle & Nerve 1991; 14:858–62.CrossRefGoogle Scholar
  6. 6.
    Lamontagne A, Buchthal F. Electrophysiological studies in diabetic neuropathy. J Neurol Neurosurg Psychiat 1970; 33:442–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Van Slyke MA, Ostrov BE. MRI evaluation of diabetic muscle infarction. Magn Reson Imaging 1995; 13:325–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Rocca PV, Alloway JA, Nashel DJ. Diabetic muscle infarction. Semin Arthritis Rheum 1993; 22:280–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Eady JL, Cobbs KF. Diabetic muscle infarction. J South Orthop Assoc 1997; 6:250–5.PubMedGoogle Scholar
  10. 10.
    Scully RE, Mark EJ, McNeely WF, McNeely BU. Case records of the Massachusetts General Hospital. N Engl J Med 1987; 316:1326–35.CrossRefGoogle Scholar
  11. 11.
    Saitoh Y, Toyooka H, Amaha K. Recoveries of posttetanic twitch and train-of-four responses after administration of vecuronium with different inhalation anaesthetics and neuroleptanaesthesia. Br J Anaesth 1993; 70:402–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Saitoh Y, Toyooka H, Amaha K. Relationship between post-tetanic twitch and single twitch response after administration of vecuronium. Br J Anaesth 1993; 71:443–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Motamed C, Donati F. Sevoflurane and isoflurane, but not propofol, decrease mivacurium requirements over time. Can J Anesth 2002; 49:907–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Dragne A, Varin F, Plaud B, Donati F. Rocuronium pharmacokinetic-pharmacodynamic relationship under stable propofol or isoflurane anesthesia. Can J Anesth 2002; 49:353–60.PubMedGoogle Scholar
  15. 15.
    Woloszczuk-Gebicka B. Mivacurium infusion requirement and spontaneous recovery of neuromuscular transmission in children anaesthetized with nitrous oxide and fentanyl, halothane, isoflurane or sevoflurane. Paediatr Anaesth 2002; 12:511–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Bennett PH. Definition, diagnosis, and classification of diabetes mellitus and impaired glucose tolerance.In: Kahn CR, Weir GC (Eds). Joslin’s Diabetes Mellitus, 13th ed. Pennsylvania: Lea & Febiger; 1994: 193–200.Google Scholar
  17. 17.
    Gepts E. Pharmacokinetic concepts for TCI anaesthesia. Anaesthesia 1998; 53(Suppl 1):4–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991; 67:41–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Viby-Mogensen J, Engbaek J, Eriksson LI, et al. Good clinical research practice (GCRP) in pharmacodynamic studies of neuromuscular blocking agents. Acta Anaesthesiol Scand 1996; 40:59–74.PubMedGoogle Scholar
  20. 20.
    Lee GC, Iyengar S, Szenohradszky J, et al. Improving the design of muscle relaxant studies. Stabilization period and tetanic recruitment. Anesthesiology 1997; 86:48–54.PubMedCrossRefGoogle Scholar
  21. 21.
    McCoy EP, Mirakhur RK, Connolly FM, Loan PB. The influence of the duration of control stimulation on the onset and recovery of neuromuscular block. Anesth Analg 1995; 80:364–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Savarese JJ, Caldwell JE, Lien CA, Miller RD. Pharmacology of muscle relaxants and their antagonists. Miller RD (Ed.). Anesthesia, 5th ed. Philadelphia: Churchill Livingstone; 2000: 471–2.Google Scholar
  23. 23.
    Saitoh Y, Kaneda K, Toyooka H, Amaha K. Post-tetanic count and single twitch height at the onset of reflex movement after administration of vecuronium under different types of anaesthesia. Br J Anaesth 1994; 72:688–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Lowry DW, Mirakhur RK, McCarthy GJ, Carroll MT, McCourt KC. Neuromuscular effects of rocuronium during sevoflurane, isoflurane, and intravenous anesthesia. Anesth Analg 1998; 87:936–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Wulf H, Kahl M, Ledowski T. Augmentation of the neuromuscular blocking effects of cisatracurium during desflurane, sevoflurane, isoflurane or total i.v. anaesthesia. Br J Anaesth 1998; 80:308–12.PubMedGoogle Scholar
  26. 26.
    Kopman AF. The relationship of evoked electromyographic and mechanical responses following atracurium in humans. Anesthesiology 1985; 63:208–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Motulski H. Choosing an Appropriate Sample Size. Institutive Biostatistics, 1st ed. New York: Oxford University Press; 1995: 195–204.Google Scholar

Copyright information

© Canadian Anesthesiologists 2005

Authors and Affiliations

  • Yuhji Saitoh
    • 2
  • Hisashi Hattori
    • 1
  • Norie Sanbe
    • 1
  • Hiroshi Nakajima
    • 1
  • Masahiko Akatu
    • 1
  • Masahiro Murakawa
    • 1
  1. 1.Department of AnesthesiologyFukushima Medical University School of MedicineFukushimaJapan
  2. 2.Department of AnesthesiologySaitama Medical SchoolIruma-gun, SaitamaJapan

Personalised recommendations